Exploiting the Features of Clinical Judgment to Improve Assessment of Disease Severity in the Emergency Department: An Acutelines Study
Abstract
:1. Background
2. Methods
2.1. Study Design
2.2. Developing the Clinical Impression Score Instrument (Phase 1)
- Step one: Recruitment of participant for NGT session
- Step two: Delphi technique with the group of experts
- Step three: Consensus-based final selection of factors
- Step four: Development of the clinical impression score questionnaire
2.3. Prospective Validation of the CIS (Phase 2)
Population and Data Collection
2.4. Ethical Approval
2.5. Inclusion and Exclusion Criteria
2.6. Definitions and Outcomes
2.7. Statistical Analysis
3. Results
3.1. Development of the Clinical Impression Score Instrument
3.2. Prospective Validation of the Clinical Impression Score Instrument
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef]
- Zelis, N.; Mauritz, A.N.; Kuijpetrs, L.I.J.; Buijs, J.; De Leeuw, P.W.; Stassen, P.M. Short-term mortality in older medical emergency patients can be predicted using clinical intuition: A prospective study. PLoS ONE 2019, 14, e0208741. [Google Scholar] [CrossRef]
- Iversen, A.K.S.; Kristensen, M.; Østetrvig, R.M.; Køber, L.; Sölétormos, G.; Forberg, J.L.; Eugen-Olsen, J.; Rasmussen, L.S.; Schou, M.; Iversen, K.K.; et al. A simple clinical assessment is superior to systematic triage in prediction of mortality in the emergency department. Emerg. Med. J. 2019, 36, 66–71. [Google Scholar] [CrossRef]
- Quinten, V.M.; van Meurs, M.; Wolffensperger, A.E.; Ter Maaten, J.C.; Ligtenberg, J.J. Sepsis patients in the emergency department: Stratification using the Clinical Impression Score, Predisposition, Infection, Response and Organ dysfunction score or quick Sequential Organ Failure Assessment score? Eur. J. Emerg. Med. 2018, 25, 328–334. [Google Scholar] [CrossRef]
- Lee, E.E.M.; Kwok, E.S.H.; Vaillancourt, C. Using emergency physicians’ abilities to predict patient admission to decrease admission delay time. Emerg. Med. J. 2020, 37, 417–422. [Google Scholar] [CrossRef]
- Rubulotta, F.; Marshall, J.C.; Ramsay, G.; Nelson, D.; Levy, M.; Williams, M. Predisposition, insult/infection, response, and organ dysfunction: A new model for staging severe sepsis. Crit. Care Med. 2009, 37, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Morr, M.; Lukasz, A.; Rübig, E.; Pavenstädt, H.; Kümpers, P. Sepsis recognition in the emergency department—Impact on quality of care and outcome? BMC Emerg. Med. 2017, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care. Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Peltan, I.D.; Brown, S.M.; Bletdsoe, J.R.; Sorensen, J.; Samore, M.H.; Allen, T.L.; Hough, C.L. ED Door-to-Antibiotic Time and Long-term Mortality in Sepsis. Chest 2019, 155, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Tschoellitsch, T.; Krummenacker, S.; Dünser, M.W.; Stöger, R.; Meier, J. The Value of the First Clinical Impression as Assessed by 18 Observations in Patients Presenting to the Emergency Department. J. Clin. Med. 2023, 12, 724. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, J.; Mei, J.; Jin, Y.; Lu, Y. Head-to-head comparison of qSOFA and SIRS criteria in predicting the mortality of infected patients in the emergency department: A meta-analysis. Scand. J. Trauma. Resusc. Emerg. Med. 2018, 26, 56. [Google Scholar] [CrossRef]
- Bleakley, G.; Cole, M. Recognition and management of sepsis: The nursećs role. Br. J. Nurs. 2020, 29, 1248–1251. [Google Scholar] [CrossRef]
- Van der Vegt, A.E.; Holman, M.; ter Maaten, J.C. The value of the clinical impression in recognizing and treating sepsis patients in the emergency department. Eur. J. Emerg. Med. 2012, 19, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Veldhuis, L.I.; Ridderikhof, M.L.; Bergsma, L.; Van Etten-Jamaludin, F.; Nanayakkara, P.W.; Hollmann, M. Performance of early warning and risk stratification scores versus clinical judgement in the acute setting: A systematic review. Emerg. Med. J. 2022, 39, 918–923. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Levz, M.M.; Martin, G.S.; van der Pol, T.; Angus, D.C.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.; Dean, J.; Hartin, J. Using NEWS2: An essential component of reliable clinical assessment. Clin. Med. 2022, 22, 509–513. [Google Scholar]
- Song, J.U.; Sin, C.K.; Park, H.K.; Shim, S.R.; Lee, J. Performance of the quick Sequential (sepsis-related) Organ Failure Assessment score as a prognostic tool in infected patients outside the intensive care unit: A systematic review and meta-analysis. Crit. Care 2018, 22, 28. [Google Scholar] [CrossRef]
- Raith, E.P.; Udy, A.A.; Bailey, M.; McGloughlin, S.; MacIsaac, C.; Bellomo, R.; Pilcher, D.V. Prognostic Accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care Unit. JAMA 2017, 317, 290–300. [Google Scholar] [CrossRef]
- Gustad, L.T.; Bangstad, I.L.; Torsvik, M.; Rise, M.B. Nurses’ and Physicians’ Experiences After Implementation of a Quality Improvement Project to Improve Sepsis Awareness in Hospitals. J. Multidiscip. Healthc. 2024, 17, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Douw, G.; Schoonhoven, L.; Holwerda, T.; Huisman-de Waal, G.; van Zanten, A.R.; van Achterberg, T.; van der Hoeven, J.G. Nurses’ worry or concern and early recognition of deteriorating patients on general wards in acute care hospitals: A systematic review. Crit. Care 2015, 19, 230. [Google Scholar] [CrossRef]
- Mulders, M.C.; Loots, F.J.; van Nieuwenhoven, J.; Ter Maaten, J.C.; Bouma, H.R. Use of sepsis-related diagnostic criteria in primary care: A survey among general practitioners. Fam. Pract. 2021, 38, 617–622. [Google Scholar] [CrossRef]
- Jones, J.; Hunter, D. Consensus methods for medical and health services research. BMJ 1995, 311, 376–380. [Google Scholar] [CrossRef]
- Ter Avest, E.; van Munster, B.C.; van Wijk, R.J.; Tent, S.; Ter Horst, S.; Hu, T.T.; van Heijst, L.E.; van der Veer, F.S.; van Beuningen, F.E.; ter Maaten, J.C.; et al. Cohort profile of Acutelines: A large data/biobank of acute and emergency medicine. BMJ Open 2021, 11, e047349. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.; Davis, A.; Fischhoff, B.; Yecies, E.; Grace, J.; Klobuka, A.; Mohan, D.; Hanmer, J. Comparing the predictive ability of a commercial artificial intelligence early warning system with physician judgement for clinical deterioration in hospitalised general internal medicine patients: A prospective observational study. BMJ Open 2019, 9, e032187. [Google Scholar] [CrossRef]
- Lydon, S.; Byrne, D.; Offiah, G.; Gleteson, L.; O’Connor, P. A mixed-methods investigation of health professionals’ perceptions of a physiological track and trigger system. BMJ Qual. Saf. 2016, 25, 688–695. [Google Scholar] [CrossRef] [PubMed]
Overall (N = 517) | |
---|---|
Age (median (IQR)) | 69 (51.87) |
Gender | |
Male (n (%)) | 298 (58%) |
Female (n (%)) | 219 (43%) |
Charlson comorbidity index score (median (IQR)) | 4 (0.8) |
No comorbidities (n (%)) | 55 (11%) |
One or more comorbidities (n (%)) | 462 (89%) |
Way of transport (N) | |
Ambulance (n (%)) | 355 (69%) |
Own transport (n (%)) | 158 (31%) |
Helicopter (n (%)) | 1 (0.2%) |
Already in hospital (n (%)) | 2 (0.4%) |
Illness severity at ED presentation | |
Emergency Severity Index triage category (median (IQR)) | 3 (2.4) |
Red (n (%)) | 12 (2%) |
Orange (n (%)) | 258 (50%) |
Yellow (n (%)) | 247 (48%) |
NEWS (median (IQR)) | 4 (0.4) |
NEWS ≥ 3 (n (%)) | 324 (63%) |
Infection group (N = 307) | 307 |
qSOFA (median (IQR)) | 1 (0.2) |
qSOFA 0 (low) (n (%)) | 148 (48%) |
qSOFA 1 (moderate) (n (%)) | 126 (41%) |
qSOFA ≥ 2 (high) (n (%)) | 33 (11%) |
Diagnoses at the end of ED visit | |
Infection or sepsis by physician (n (%)) | 307 (59%) |
Respiratory problems (n (%)) | 55 (11%) |
Cardiac problems (n (%)) | 20 (4%) |
Gastro-intestinal problems (n (%)) | 30 (6%) |
Syncope (n%) | 22 (4%) |
Intoxication (n (%)) | 26 (5%) |
Electrolyte disbalance (n (%)) | 7 (1%) |
Allergy (n (%)) | 8 (2%) |
Other causes (n (%)) | 42 (8%) |
Variabele | Overall (n (%)) | OR (95% CI) | CIS p-Value |
---|---|---|---|
Number of patients | 517 (100%) | ||
Clinical outcome | |||
Admission to hospital | 399 (77%) | 0.86 (0.52–1.43) | 0.56 |
ICU admission | 46 (9%) | 1.67 (1.37–2.03) | <0.001 |
In-hospital mortality within 48 h | 8 (1.5%) | 2.25 (1.33–3.81) | <0.001 |
28-day mortality | 27 (5%) | 1.33 (1.07–1.65) | <0.001 |
Variables | Checked % (n/N) | RC (95%CI) | p-Value |
---|---|---|---|
Mucous membranes, dry | 24.5% (126/515) | 0.89 (0.47–1.35) | <0.001 |
Eye glance | 63.6% (328/516) | 0.69 (0.32–1.06) | <0.001 |
Behavior of the family | 18.3% (93/507) | −0.66 (−1.13–−0.19) | 0.006 |
Self-estimation of the patient | 34.8% (179/514) | −0.59 (−0.97–−0.21) | 0.002 |
Red flags at physical examination | 57.3% (293/511) | 0.99 (0.62–1.35) | <0.001 |
Interpretation of arterial blood gas analysis | 52.3% (269/514) | 0.53 (0.172–0.89) | 0.004 |
Variables | Checked % (n/N) | RC (95%CI) | p-Value |
---|---|---|---|
CIS: Mucous membrane, dry | 25% (126/515) | 0.87 (0.42–1.132 | <0.001 |
CIS: Eye glance | 64% (328/516) | 0.69 (0.30–1.108) | <0.001 |
CIS: Behavior of the family | 18% (93/507) | −0.58 (−1.08–−0.08) | 0.02 |
CIS: Self-estimation of the patient | 35% (179/514) | −0.44 (−0.84–−0.03) | 0.04 |
CIS: Red flags during physical examinations | 57% (293/511) | 0.99 (0.61–1.37) | <0.001 |
CIS: Interpretation of arterial blood gas analysis | 52% (269/514) | 0.44 (0.05–0.82) | 0.03 |
Heart rate (n (%)) | 100% (517/517) | 0.01 (0.002–0.02) | 0.01 |
Systolic blood pressure (n (%)) | 517 (100%) | −0.01 (−0.02–−0.003) | 0.01 |
Respiration rate (n (%)) | 416 (80%) | 0.04 (0.01–0.07) | 0.02 |
Oxygen modality (n (%)) | 515 (99%) | −0.33 (0.12–0.54) | 0.00 |
Glasgow Coma Scale (n (%)) | 493 (95%) | −0.19 (−0.30–−0.08) | <0.001 |
Triage urgency (n (%)) | 517 (100%) | 0.49 (0.12–0.86) | 0.01 |
Age (n (%)) | 517 (100%) | 0.02 (0.01–0.03) | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visser, M.; Rossi, D.; Bouma, H.R.; ter Maaten, J.C. Exploiting the Features of Clinical Judgment to Improve Assessment of Disease Severity in the Emergency Department: An Acutelines Study. J. Clin. Med. 2024, 13, 1359. https://doi.org/10.3390/jcm13051359
Visser M, Rossi D, Bouma HR, ter Maaten JC. Exploiting the Features of Clinical Judgment to Improve Assessment of Disease Severity in the Emergency Department: An Acutelines Study. Journal of Clinical Medicine. 2024; 13(5):1359. https://doi.org/10.3390/jcm13051359
Chicago/Turabian StyleVisser, Martje, Daniel Rossi, Hjalmar R. Bouma, and Jan C. ter Maaten. 2024. "Exploiting the Features of Clinical Judgment to Improve Assessment of Disease Severity in the Emergency Department: An Acutelines Study" Journal of Clinical Medicine 13, no. 5: 1359. https://doi.org/10.3390/jcm13051359
APA StyleVisser, M., Rossi, D., Bouma, H. R., & ter Maaten, J. C. (2024). Exploiting the Features of Clinical Judgment to Improve Assessment of Disease Severity in the Emergency Department: An Acutelines Study. Journal of Clinical Medicine, 13(5), 1359. https://doi.org/10.3390/jcm13051359