Influence of Biometric and Corneal Tomographic Parameters on Normative Corneal Aberrations Measured by Root Mean Square
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wen, D.; McAlinden, C.; Flitcroft, I.; Tu, R.; Wang, Q.; Alió, J.; Marshall, J.; Huang, Y.; Song, B.; Hu, L.; et al. Postoperative Efficacy, Predictability, Safety, and Visual Quality of Laser Corneal Refractive Surgery: A Network Meta-analysis. Arch. Ophthalmol. 2017, 178, 65–78. [Google Scholar] [CrossRef] [PubMed]
- Santhiago, M.R.; Giacomin, N.T.; Smadja, D.; Bechara, S.J. Ectasia risk factors in refractive surgery. Clin. Ophthalmol. 2016, 10, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Ambrósio, R.; Randleman, J.B. Screening for Ectasia Risk: What Are We Screening For and How Should We Screen For It? J. Refract. Surg. 2013, 29, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.C.; Rapuano, C.J.; Cater, J.R.; Suri, K.; Nagra, P.K.; Hammersmith, K.M. Comparative evaluation of dual Scheimpflug imaging parameters in keratoconus, early keratoconus, and normal eyes. J. Cataract. Refract. Surg. 2014, 40, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Alió, J.L.; Shabayek, M.H. Corneal Higher Order Aberrations: A Method to Grade Keratoconus. J. Refract. Surg. 2006, 22, 539–545. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ferreira, A.; Franco, S. Wavefront analysis and Zernike polynomial decomposition for evaluation of corneal optical quality. J. Cataract. Refract. Surg. 2012, 38, 343–356. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, L.; Zhang, Y.; Wang, K. Analysis of Asphericity and Corneal Longitudinal Spherical Aberration of 915 Chinese Myopic Adult Eyes. Clin. Ophthalmol. 2023, 17, 591–600. [Google Scholar] [CrossRef]
- Namba, H.; Kawasaki, R.; Sugano, A.; Murakami, T.; Nishitsuka, K.; Kato, T.; Kayama, T.; Yamashita, H. Age-Related Changes in Ocular Aberrations and the Yamagata Study (Funagata). Cornea 2017, 36 (Suppl. S1), S34–S40. [Google Scholar] [CrossRef]
- Amano, S.; Amano, Y.; Yamagami, S.; Miyai, T.; Miyata, K.; Samejima, T.; Oshika, T. Age-related changes in corneal and ocular higher-order wavefront aberrations. Arch. Ophthalmol. 2004, 137, 988–992. [Google Scholar] [CrossRef]
- Berrio, E.; Tabernero, J.; Artal, P. Optical aberrations and alignment of the eye with age. J. Vis. 2010, 10, 34. [Google Scholar] [CrossRef]
- Atchison, D.A.; Markwell, E.L. Aberrations of emmetropic subjects at different ages. Vis. Res. 2008, 48, 2224–2231. [Google Scholar] [CrossRef] [PubMed]
- Athaide, H.V.Z.; Campos, M.; Costa, C. Study of ocular aberrations with age. Arq. Bras. Oftalmol. 2009, 72, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Nakano, E.M.; Bains, H.; Nakano, K.; Nakano, C.; Portellinha, W.; Oliveira, M.; Alvarenga, L. Wavefront Analysis in Asian-Brazilians. J. Refract. Surg. 2006, 22, S1024–S1026. [Google Scholar] [CrossRef] [PubMed]
- Osuagwu, U.L.; Suheimat, M.; Atchison, D.A. Peripheral aberrations in adult hyperopes, emmetropes and myopes. Ophthalmic Physiol. Opt. 2017, 37, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Prakash, G.; Srivastava, D.; Choudhuri, S.; Bacero, R. Comparison of Ocular Monochromatic Higher-Order Aberrations in Normal Refractive Surgery Candidates of Arab and South Asian Origin. Middle East Afr. J. Ophthalmol. 2016, 23, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Almorín-Fernández-Vigo, I.; Sánchez-Guillén, I.; Macarro-Merino, A.; Kudsieh, B.; Fernández-Vigo, C.; Fernández-Vigo, J.A. Normative Pentacam anterior and posterior corneal elevation measurements: Effects of age, sex, axial length and white-to-white. Int. Ophthalmol. 2019, 39, 1955–1963. [Google Scholar] [CrossRef]
- Feng, M.T.; Belin, M.W.; Ambrósio, R.; Grewal, S.P.; Yan, W.; Shaheen, M.S.; Jordon, C.A.; McGhee, C.; Maeda, N.; Neuhann, T.H.; et al. International values of corneal elevation in normal subjects by rotating Scheimpflug camera. J. Cataract. Refract. Surg. 2011, 37, 1817–1821. [Google Scholar] [CrossRef]
- Kim, J.T.; Cortese, M.; Belin, M.W.; Ambrosio, R., Jr.; Khachikian, S.S. Tomographic Normal Values for Corneal Elevation and Pachymetry in a Hyperopic Population. J. Clin. Exp. Ophthalmol. 2011, 2, 130. [Google Scholar] [CrossRef]
- Cheng, X.; Bradley, A.; Hong, X.; Thibos, L.N. Relationship between refractive error and monochromatic aberrations of the eye. Optom. Vis. Sci. 2003, 80, 43–49. [Google Scholar] [CrossRef]
- Yousif, M.O.; Elkitkat, R.S.; Alaarag, N.A.; Shams, A.; Gharieb, H.M. Relation of Corneal Astigmatism with Various Corneal Image Quality Parameters in a Large Cohort of Naïve Corneas. Clin. Ophthalmol. 2020, 14, 2203–2210. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Yin, X.; Li, J.; Cao, Y.; Lu, P. Distribution and related factors of corneal regularity and posterior corneal astigmatism in cataract patients. Clin. Ophthalmol. 2019, 13, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Fujikado, T.; Kuroda, T.; Ninomiya, S.; Maeda, N.; Tano, Y.; Oshika, T.; Hirohara, Y.; Mihashi, T. Age-related changes in ocular and corneal aberrations. Am. J. Ophthalmol. 2004, 138, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, X.; Ortega-Usobiaga, J.; Zheng, H.; Luo, W.; Tu, B.; Wang, Y. Characteristics and influencing factors of corneal higher-order aberrations in patients with cataract. BMC Ophthalmol. 2023, 23, 313. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Song, H.; Tang, X. Correlation of anterior corneal higher-order aberrations with age: A comprehensive investigation. Cornea 2014, 33, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Namba, H.; Kawasaki, R.; Narumi, M.; Sugano, A.; Homma, K.; Nishi, K.; Murakami, T.; Kato, T.; Kayama, T.; Yamashita, H. Ocular Higher-Order Wavefront Aberrations in the Japanese Adult Population: The Yamagata Study (Funagata). Investig. Opthalmol. Vis. Sci. 2015, 56, 90–97. [Google Scholar] [CrossRef]
- Nemeth, G.; Hassan, Z.; Szalai, E.; Berta, A.; Modis, L. Analysis of Age-Dependence of the Anterior and Posterior Cornea With Scheimpflug Imaging. J. Refract. Surg. 2013, 29, 326–331. [Google Scholar] [CrossRef]
- Kemraz, D.; Cheng, X.-Y.; Shao, X.; Zhou, K.-J.; Pan, A.-P.; Lu, F.; Yu, A.-Y. Age-Related Changes in Corneal Spherical Aberration. J. Refract. Surg. 2018, 34, 760–767. [Google Scholar] [CrossRef]
- Goto, S.; Maeda, N. Corneal Topography for Intraocular Lens Selection in Refractive Cataract Surgery. Ophthalmology 2021, 128, e142–e152. [Google Scholar] [CrossRef]
- Bühren, J.; Schäffeler, T.; Kohnen, T. Validation of metrics for the detection of subclinical keratoconus in a new patient collective. J. Cataract. Refract. Surg. 2014, 40, 259–268. [Google Scholar] [CrossRef]
- Castro-Luna, G.; Pérez-Rueda, A. A predictive model for early diagnosis of keratoconus. BMC Ophthalmol. 2020, 20, 263. [Google Scholar] [CrossRef]
- Bartsch, D.-U.; Bessho, K.; Gomez, L.; Freeman, W.R. Comparison of laser ray-tracing and skiascopic ocular wavefront-sensing devices. Eye 2008, 22, 1384–1390. [Google Scholar] [CrossRef] [PubMed]
- Read, S.A.; Collins, M.J.; Iskander, R.D.; Davis, B.A. Corneal topography with Scheimpflug imaging and videokeratography: Comparative study of normal eyes. J. Cataract. Refract. Surg. 2009, 35, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Prakash, G.; Sharma, N.; Choudhary, V.; Titiyal, J.S. Higher-order aberrations in young refractive surgery candidates in India: Establishment of normal values and comparison with white and Chinese Asian populations. J. Cataract. Refract. Surg. 2008, 34, 1306–1311. [Google Scholar] [CrossRef] [PubMed]
- Fieß, A.; Schuster, A.K.; Kölb-Keerl, R.; Knuf, M.; Kirchhof, B.; Muether, P.S.; Bauer, J.; for the Prematurity Eye Study Group. Corneal Aberrations in Former Preterm Infants: Results from the Wiesbaden Prematurity Study. Investig. Opthalmology Vis. Sci. 2017, 58, 6374. [Google Scholar] [CrossRef] [PubMed]
- Fieß, A.; Berger, L.A.; Riedl, J.C.; Mildenberger, E.; Urschitz, M.S.; Hampel, U.; Wasielica-Poslednik, J.; Zepp, F.; Stoffelns, B.; Pfeiffer, N.; et al. The role of preterm birth, retinopathy of prematurity and perinatal factors on corneal aberrations in adulthood: Results from the Gutenberg prematurity eye study. Ophthalmic Physiol. Opt. 2022, 42, 1379–1389. [Google Scholar] [CrossRef]
- Anbar, M.; Mostafa, E.M.; Elhawary, A.M.; Awny, I.; Farouk, M.M.; Mounir, A. Evaluation of Corneal Higher-Order Aberrations by Scheimpflug–Placido Topography in Patients with Different Refractive Errors: A Retrospective Observational Study. J. Ophthalmol. 2019, 2019, 5640356. [Google Scholar] [CrossRef]
- Kasahara, K.; Maeda, N.; Fujikado, T.; Tomita, M.; Moriyama, M.; Fuchihata, M.; Ohno-Matsui, K. Characteristics of higher-order aberrations and anterior segment tomography in patients with pathologic myopia. Int. Ophthalmol. 2017, 37, 1279–1288. [Google Scholar] [CrossRef]
- Salman, A.; Kailani, O.; Ghabra, M.; Omran, R.; Darwish, T.R.; Shaaban, R.; Ibrahim, H.; Alhaji, H.; Khalil, H. Corneal higher order aberrations by Sirius topography and their relation to different refractive errors. BMC Ophthalmol. 2023, 23, 104. [Google Scholar] [CrossRef]
- Aksoy, S.; Akkaya, S.; Özkurt, Y.; Kurna, S.; Açıkalın, B.; Şengör, T. Topography and Higher Order Corneal Aberrations of the Fellow Eye in Unilateral Keratoconus. Turk. J. Ophthalmol. 2017, 47, 249–254. [Google Scholar] [CrossRef]
- Prakash, G.; Suhail, M.; Srivastava, D. Predictive Analysis Between Topographic, Pachymetric and Wavefront Parameters in Keratoconus, Suspects and Normal Eyes: Creating Unified Equations to Evaluate Keratoconus. Curr. Eye Res. 2016, 41, 334–342. [Google Scholar] [CrossRef]
- Feizi, S.; Einollahi, B.; Raminkhoo, A.; Salehirad, S. Correlation between Corneal Topographic Indices and Higher-Order Aberrations in Keratoconus. J. Ophthalmic Vis. Res. 2013, 8, 113–118. [Google Scholar] [PubMed] [PubMed Central]
- Gordon-Shaag, A.; Millodot, M.; Ifrah, R.; Shneor, E. Aberrations and Topography in Normal, Keratoconus-Suspect, and Keratoconic Eyes. Optom. Vis. Sci. 2012, 89, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Ozkan, H.H.; Koc, M.; Kiziltoprak, H.; Tekin, K.; Aydemir, E. Evaluation of topographic, tomographic, topometric, densitometric, and aberrometric features of cornea with pentacam HR system in subclinical keratoconus. Int. Ophthalmol. 2021, 41, 1729–1741. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xue, C.; Zhang, Y.; Liu, C.; Du, J.; Li, Y.; Liu, J.; Wei, S.; Wu, Z. Diagnostic value of corneal higher-order aberrations in keratoconic eyes. Int. Ophthalmol. 2023, 43, 1195–1206. [Google Scholar] [CrossRef]
- Heidari, Z.; Jafarzadehpour, E.; Mohammadpour, M.; Hashemi, H. Best indices of dual Scheimpflug/Placido tomographer for keratoconus detection. Int. Ophthalmol. 2022, 43, 1353–1362. [Google Scholar] [CrossRef]
- Ni, Y.; Liu, X.; Lin, Y.; Guo, X.; Wang, X.; Liu, Y. Evaluation of corneal changes with accommodation in young and presbyopic populations using Pentacam High Resolution Scheimpflug system. Clin. Exp. Ophthalmol. 2013, 41, 244–250. [Google Scholar] [CrossRef]
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.933 | −0.084 | −0.082 | (Constant) | |
0.000 * | 23.838 | 0.660 | 0.661 | ACA |
0.000 * | 7.454 | 0.171 | 0.009 | Age |
0.000 * | −10.746 | −0.387 | −0.270 | Ele F Apex |
0.000 * | −6.745 | −0.178 | −0.158 | RA |
0.003 * | −3.014 | −0.070 | −0.137 | WTW |
0.000 * | −4.798 | −0.163 | −1.021 | QF |
0.000 * | 4.242 | 0.106 | 0.058 | KmF |
R2 (%) = 69.8% Model F = 247.796 |
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.000 * | −3.540 | −0.601 | (Constant) | |
0.000 * | 9.731 | 0.311 | 0.065 | ACA |
0.000 * | 9.307 | 0.306 | 0.036 | KmF |
0.000 * | −9.360 | −0.315 | −0.004 | Age |
0.000 * | −3.922 | −0.124 | −0.043 | Sex |
0.000 * | −4.677 | −0.218 | −0.032 | Ele F Apex |
0.000 * | 3.625 | 0.162 | 0.016 | Ele F Thin |
R2 (%) = 31.3% Model F = 57.772 |
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.122 | 1.547 | 0.487 | (Constant) | |
0.000 * | 8.266 | 0.284 | 0.003 | Age |
0.000 * | 3.968 | 0.159 | 0.212 | QF |
0.000 * | 5.830 | 0.224 | 0.048 | ACA |
0.000 * | −6.288 | −0.258 | −0.025 | Ele F Thin |
0.000 * | −3.976 | −0.140 | −0.058 | WTW |
0.004 * | 2.894 | 0.103 | 0.012 | KmF |
0.025 * | 2.246 | 0.074 | 0.004 | Sphere |
0.033 * | 2.139 | 0.067 | 0.024 | Sex |
R2 (%) = 33.3% Model F = 47.649 |
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.000 * | −7.098 | −0.264 | (Constant) | |
0.000 * | 12.915 | 0.441 | 0.011 | KmF |
0.000 * | −7.136 | −0.256 | −0.001 | Age |
0.000 * | −4.071 | −0.148 | −0.005 | Ele F Apex |
R2 (%) = 19.9% Model F = 62.794 |
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.000 * | −4.074 | −0.462 | (Constant) | |
0.000 * | 16.572 | 0.431 | 0.432 | PCA |
0.000 * | 7.792 | 0.358 | 0.279 | QB |
0.000 * | −11.223 | −0.290 | −0.197 | KmB |
0.000 * | 11.200 | 0.448 | 0.013 | Ele B Thin |
0.000 * | −9.487 | −0.518 | −0.026 | Ele B Apex |
0.000 * | −5.061 | −0.144 | −0.002 | Age |
0.004 * | −2.907 | −0.068 | −0.024 | Sex |
0.010 * | −2.578 | −0.062 | −0.011 | RA |
R2 (%) = 63.4% Model F = 144.297 |
Sig. | t | Standardized Coefficients | Unstandardized Coefficients | Dependent Variables Predicting RMS LOAs (Anterior Cornea) |
---|---|---|---|---|
Beta | B | |||
0.000 * | −10.596 | −0.295 | (Constant) | |
0.000 * | −16.170 | −1.064 | −0.012 | Ele B Apex |
0.000 * | −18.005 | −0.536 | −0.079 | KmB |
0.000 * | 12.079 | 0.556 | 0.004 | Ele B Thin |
0.005 * | −2.810 | −0.093 | 0.000 | Age |
0.041 * | −2.050 | −0.113 | −0.019 | QB |
R2 (%) = 46.0% Model F = 128.154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almorín-Fernández-Vigo, I.; Pagán Carrasco, S.; Sánchez-Guillén, I.; Fernández-Vigo, J.I.; Macarro-Merino, A.; Kudsieh, B.; Fernández-Vigo, J.Á. Influence of Biometric and Corneal Tomographic Parameters on Normative Corneal Aberrations Measured by Root Mean Square. J. Clin. Med. 2024, 13, 7125. https://doi.org/10.3390/jcm13237125
Almorín-Fernández-Vigo I, Pagán Carrasco S, Sánchez-Guillén I, Fernández-Vigo JI, Macarro-Merino A, Kudsieh B, Fernández-Vigo JÁ. Influence of Biometric and Corneal Tomographic Parameters on Normative Corneal Aberrations Measured by Root Mean Square. Journal of Clinical Medicine. 2024; 13(23):7125. https://doi.org/10.3390/jcm13237125
Chicago/Turabian StyleAlmorín-Fernández-Vigo, Ignacio, Silvia Pagán Carrasco, Inés Sánchez-Guillén, José Ignacio Fernández-Vigo, Ana Macarro-Merino, Bachar Kudsieh, and José Ángel Fernández-Vigo. 2024. "Influence of Biometric and Corneal Tomographic Parameters on Normative Corneal Aberrations Measured by Root Mean Square" Journal of Clinical Medicine 13, no. 23: 7125. https://doi.org/10.3390/jcm13237125
APA StyleAlmorín-Fernández-Vigo, I., Pagán Carrasco, S., Sánchez-Guillén, I., Fernández-Vigo, J. I., Macarro-Merino, A., Kudsieh, B., & Fernández-Vigo, J. Á. (2024). Influence of Biometric and Corneal Tomographic Parameters on Normative Corneal Aberrations Measured by Root Mean Square. Journal of Clinical Medicine, 13(23), 7125. https://doi.org/10.3390/jcm13237125