Applications of Near Infrared Spectroscopy and Mirror Therapy for Upper Limb Rehabilitation in Post-Stroke Patients: A Brain Plasticity Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.3. Experimental Procedures
2.4. Outcome Measurements
- Mini Mental State Examination
- Fugl–Meyer Assessment
- Functional Independence Measure
2.5. Analysis
- fNIRS data pre-processing
- Measurement model
- Statistical Analysis
3. Results
- fNIRS analysis
- Right hemiparesis group
- Left hemiparesis group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, W.; Onuma, O.; Owolabi, M.; Sachdev, S. Stroke: A global response is needed. Bull. World Health Organ. 2016, 94, 634. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Thrift, A.G.; Thayabaranathan, T.; Howard, G.; Howard, V.J.; Rothwell, P.M.; Feigin, V.L.; Norrving, B.; Donnan, G.A.; Cadilhac, D.A. Global stroke statistics. Int. J. Stroke 2017, 12, 13–32. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Veerbeek, J.M.; van Wegen, E.; van Peppen, R.; Van der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. PLoS ONE 2014, 9, e87987. [Google Scholar] [CrossRef]
- Wafa, H.A.; Wolfe, C.D.A.; Emmett, E.; Roth, G.A.; Johnson, C.O.; Wang, Y. Burden of Stroke in Europe. Stroke 2020, 51, 2418–2427. [Google Scholar] [CrossRef]
- Keely Boyle, K.; Rachala, S.; Nodzo, S.R. Centers for Disease Control and Prevention 2017 Guidelines for Prevention of Surgical Site Infections: Review and Relevant Recommendations. Curr. Rev. Musculoskelet. Med. 2018, 11, 357–369. [Google Scholar] [CrossRef]
- Bray, J.E.; Johnson, R.; Trobbiani, K.; Mosley, I.; Lalor, E.; Cadilhac, D. Australian Public’s Awareness of Stroke Warning Signs Improves After National Multimedia Campaigns. Stroke 2013, 44, 3540–3543. [Google Scholar] [CrossRef]
- Pomeroy, V.; Aglioti, S.M.; Mark, V.W.; McFarland, D.; Stinear, C.; Wolf, S.L.; Corbetta, M.; Fitzpatrick, S.M. Neurological Principles and Rehabilitation of Action Disorders: Rehabilitation interventions. Neurorehabilit. Neural Repair 2011, 25 (Suppl. 5), 33S–43S. [Google Scholar] [CrossRef]
- Frey, S.H.; Fogassi, L.; Grafton, S.; Picard, N.; Rothwell, J.C.; Schweighofer, N.; Corbetta, M.; Fitzpatrick, S.M. Neurological Principles and Rehabilitation of Action Disorders: Computation, anatomy, and physiology (CAP) model. Neurorehabilit. Neural Repair 2011, 25 (Suppl. 5), 6S–20S. [Google Scholar] [CrossRef]
- Marek, K.; Redlicka, J.; Miller, E.; Zubrycki, I. Objectivizing Measures of Post-Stroke Hand Rehabilitation through Multi-Disciplinary Scales. J. Clin. Med. 2023, 12, 7497. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, N.; Izumi, S.I. Rehabilitation with Poststroke Motor Recovery: A Review with a Focus on Neural Plasticity. Stroke Res. Treat. 2013, 2013, 128641. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-López, L.; Moreno-Verdú, M.; Cuenca-Zaldívar, J.N.; Romero, J.P. Effects of Hand Motor Interventions on Cognitive Outcomes Post-stroke: A Systematic Review and Bayesian Network Meta-analysis. Arch. Phys. Med. Rehabil. 2024, 105, 1770–1783. [Google Scholar] [CrossRef] [PubMed]
- Van Peppen, R.P.; Kwakkel, G.; Wood-Dauphinee, S.; Hendriks, H.J.; Van der Wees, P.J.; Dekker, J. The impact of physical therapy on functional outcomes after stroke: What’s the evidence? Clin. Rehabil. 2004, 18, 833–862. [Google Scholar] [CrossRef] [PubMed]
- Garry, M.I.; Loftus, A.; Summers, J.J. Mirror, mirror on the wall: Viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability. Exp. Brain Res. 2005, 163, 118–122. [Google Scholar] [CrossRef]
- Thieme, H.; Mehrholz, J.; Pohl, M.; Behrens, J.; Dohle, C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst. Rev. 2012, 7, CD008449. [Google Scholar] [CrossRef]
- Bowering, K.J.; O’Connell, N.E.; Tabor, A.; Catley, M.J.; Leake, H.B.; Moseley, G.L.; Stanton, T.R. The Effects of Graded Motor Imagery and Its Components on Chronic Pain: A Systematic Review and Meta-Analysis. J. Pain 2013, 14, 3–13. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, Y.Y. Mirror Therapy for Phantom Limb Pain. Korean J. Pain 2012, 25, 272–274. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Kuo, L.C.; Lin, Y.C.; Su, F.C.; Yang, T.H.; Lin, C.W. Effects of a Virtual Reality–Based Mirror Therapy Program on Improving Sensorimotor Function of Hands in Chronic Stroke Patients: A Randomized Controlled Trial. Neurorehabilit. Neural Repair 2022, 36, 335–345. [Google Scholar] [CrossRef]
- Hamzei, F.; Läppchen, C.H.; Glauche, V.; Mader, I.; Rijntjes, M.; Weiller, C. Functional Plasticity Induced by Mirror Training. Neurorehabilit. Neural Repair 2012, 26, 484–496. [Google Scholar] [CrossRef]
- Carvalho, D.; Teixeira, S.; Lucas, M.; Yuan, T.F.; Chaves, F.; Peressutti, C.; Machado, S.; Bittencourt, J.; Menéndez-González, M.; Nardi, A.E.; et al. The mirror neuron system in post-stroke rehabilitation. Int. Arch. Med. 2013, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fritzsch, C.; Bernarding, J.; Holtze, S.; Mauritz, K.H.; Brunetti, M.; Dohle, C. A comparison of neural mechanisms in mirror therapy and movement observation therapy. J. Rehabil. Med. 2013, 45, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fritzsch, C.; Bernarding, J.; Krause, T.; Mauritz, K.H.; Brunetti, M.; Dohle, C. Cerebral activation evoked by the mirror illusion of the hand in stroke patients compared to normal subjects. NeuroRehabilitation 2013, 33, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, R.M.; Caspers, S.; Eickhoff, S.B.; Swinnen, S.P. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neurosci. Biobehav. Rev. 2018, 94, 31–44. [Google Scholar] [CrossRef]
- Antonioni, A.; Raho, E.M.; Straudi, S.; Granieri, E.; Koch, G.; Fadiga, L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. Narrat. Rev. Neurosci. Biobehav. Rev. 2024, 164, 105830. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, H.E.; Borrelli, M.R.; Borchert, R.J.; Bradbury, D.; Ward, N.S. Cortical Mechanisms of Mirror Therapy After Stroke. Neurorehabilit. Neural Repair 2015, 29, 444–452. [Google Scholar] [CrossRef]
- Brunetti, M.; Morkisch, N.; Fritzsch, C.; Mehnert, J.; Steinbrink, J.; Niedeggen, M.; Dohle, C. Potential determinants of efficacy of mirror therapy in stroke patients—A pilot study. Restor. Neurol. Neurosci. 2015, 33, 421–434. [Google Scholar] [CrossRef]
- Mehnert, J.; Brunetti, M.; Steinbrink, J.; Niedeggen, M.; Dohle, C. Effect of a mirror-like illusion on activation in the precuneus assessed with functional near-infrared spectroscopy. J. Biomed. Opt. 2013, 18, 066001. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, K.D.; Bulea, T.C.; Park, H.S. Increasing motor cortex activation during grasping via novel robotic mirror hand therapy: A pilot fNIRS study. J. NeuroEngineering Rehabil. 2022, 19, 8. [Google Scholar] [CrossRef]
- Buccino, G.; Binkofski, F.; Fink, G.R.; Fadiga, L.; Fogassi, L.; Gallese, V.; Seitz, R.J.; Zilles, K.; Rizzolatti, G.; Freund, H.J. Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. Eur. J. Neurosci. 2001, 13, 400–404. [Google Scholar] [CrossRef]
- Voet, D.; Gratzer, W.B.; Cox, R.A.; Doty, P. Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers 1963, 1, 193–208. [Google Scholar] [CrossRef]
- Ye, J.C.; Tak, S.; Jang, K.E.; Jung, J.; Jang, J. NIRS-SPM: Statistical parametric mapping for near-infrared spectroscopy. Neuroimage 2009, 44, 428–447. [Google Scholar] [CrossRef] [PubMed]
- Huppert, T.J. Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy. Neurophotonics 2016, 3, 010401. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [CrossRef]
- Dodds, T.A.; Martin, D.P.; Stolov, W.C.; Deyo, R.A. A validation of the Functional Independence Measurement and its performance among rehabilitation inpatients. Arch. Phys. Med. Rehabil. 1993, 74, 531–536. [Google Scholar] [CrossRef]
- Tak, S.; Ye, J.C. Statistical analysis of fNIRS data: A comprehensive review. Neuroimage 2014, 85, 72–91. [Google Scholar] [CrossRef]
- Seghouane, A.K.; Ferrari, D. Robust Hemodynamic Response Function Estimation From fNIRS Signals. IEEE Trans. Signal Process. 2019, 67, 1838–1848. [Google Scholar] [CrossRef]
- Kocsis, L.; Herman, P.; Eke, A. The modified Beer–Lambert law revisited. Phys. Med. Biol. 2006, 51, N91–N98. [Google Scholar] [CrossRef]
- Terenji, A.; Willmann, S.; Osterholz, J.; Hering, P.; Schwarzmaier, H. Measurement of the coagulation dynamics of bovine liver using the modified microscopic Beer–Lambert law. Lasers Surg. Med. 2005, 36, 365–370. [Google Scholar] [CrossRef]
- Torricelli, A.; Contini, D.; Pifferi, A.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L. Time domain functional NIRS imaging for human brain mapping. Neuroimage 2014, 85, 28–50. [Google Scholar] [CrossRef] [PubMed]
- Abdelnour, A.F.; Huppert, T. Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model. Neuroimage 2009, 46, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.S.; Hong, K.S.; Ge, S.S.; Jeong, M.Y. Kalman estimator- and general linear model-based on-line brain activation mapping by near-infrared spectroscopy. Biomed. Eng. Online 2010, 9, 82. [Google Scholar] [CrossRef]
- Hornby, T.G.; Campbell, D.D.; Kahn, J.H.; Demott, T.; Moore, J.L.; Roth, H.R. Enhanced Gait-Related Improvements After Therapist- Versus Robotic-Assisted Locomotor Training in Subjects With Chronic Stroke. Stroke 2008, 39, 1786–1792. [Google Scholar] [CrossRef]
- Raciti, L.; Pignolo, L.; Perini, V.; Pullia, M.; Porcari, B.; Latella, D.; Isgrò, M.; Naro, A.; Calabrò, R.S. Improving Upper Extremity Bradykinesia in Parkinson’s Disease: A Randomized Clinical Trial on the Use of Gravity-Supporting Exoskeletons. J. Clin. Med. 2022, 11, 2543. [Google Scholar] [CrossRef]
- Imai, I.; Takeda, K.; Shiomi, T.; Taniguchi, T.; Kato, H. Sensorimotor Cortex Activation during Mirror Therapy in Healthy Right-Handed Subjects: A Study with Near-Infrared Spectroscopy. J. Phys. Ther. Sci. 2008, 20, 141–145. [Google Scholar] [CrossRef]
- Callaert, D.V.; Vercauteren, K.; Peeters, R.; Tam, F.; Graham, S.; Swinnen, S.P.; Sunaert, S.; Wenderoth, N. Hemispheric asymmetries of motor versus nonmotor processes during (visuo)motor control. Hum. Brain Mapp. 2011, 32, 1311–1329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Antonioni, A.; Galluccio, M.; Baroni, A.; Fregna, G.; Pozzo, T.; Koch, G.; Manfredini, F.; Fadiga, L.; Malerba, P.; Straudi, S. Event-related desynchronization during action observation is an early predictor of recovery in subcortical stroke: An EEG study. Ann. Phys. Rehabil. Med. 2024, 67, 101817. [Google Scholar] [CrossRef]
- Naish, K.R.; Barnes, B.; Obhi, S.S. Stimulation over primary motor cortex during action observation impairs effector recognition. Cognition 2016, 149, 84–94. [Google Scholar] [CrossRef]
- Antonioni, A.; Galluccio, M.; Toselli, R.; Baroni, A.; Fregna, G.; Schincaglia, N.; Milani, G.; Cosma, M.; Ferraresi, G.; Morelli, M.; et al. A Multimodal Analysis to Explore Upper Limb Motor Recovery at 4 Weeks After Stroke: Insights From EEG and Kinematics Measures. Clin. EEG Neurosci. 2024, 55, 465–476. [Google Scholar] [CrossRef]
- Deconinck, F.J.A.; Smorenburg, A.R.P.; Benham, A.; Ledebt, A.; Feltham, M.G.; Savelsbergh, G.J.P. Reflections on Mirror Therapy. Neurorehabilit. Neural Repair 2015, 29, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Ushiba, J.; Soekadar, S.R. Neurorehabilitation: Neural Plasticity and Functional Recovery 2018. Neural Plast. 2019, 2019, 7812148. [Google Scholar] [CrossRef] [PubMed]
- Gurgone, S.; De Salvo, S.; Bonanno, L.; Muscarà, N.; Acri, G.; Caridi, F.; Paladini, G.; Borzelli, D.; Brigandì, A.; La Torre, D.; et al. Changes in cerebral cortex activity during a simple motor task after MRgFUS treatment in patients affected by essential tremor and Parkinson’s disease: A pilot study using functional NIRS. Phys. Med. Biol. 2024, 69, 025014. [Google Scholar] [CrossRef] [PubMed]
- Hosp, J.A.; Luft, A.R. Cortical Plasticity during Motor Learning and Recovery after Ischemic Stroke. Neural Plast. 2011, 2011, 871296. [Google Scholar] [CrossRef] [PubMed]
- Formica, C.; De Salvo, S.; Corallo, F.; Latella, D.; Mìcchia, K.; Bonanno, L.; Quartarone, A.; Marino, S. Case report of anosognosia for hemiplegia: A fMRI study. Medicine 2022, 101, e32526. [Google Scholar] [CrossRef]
- Mizuguchi, N.; Kanosue, K. Changes in brain activity during action observation and motor imagery: Their relationship with motor learning. Prog. Brain Res. 2017, 234, 189–204. [Google Scholar]
Patients | (n = 10) |
---|---|
Age (years) | 61.25 ± 6.89 a |
Sex (male/female) | 7/3 |
Disease Duration (month) | 3 ± 1.22 a |
Etiology (ischemia/haemorrhage) | 4/6 |
Affected upper limb (left/right) | 7/3 |
MMSE (score) | 20.27 ± 4.46 a |
Fugl-Meyer (score) | 39 ± 6.32 a |
FIM (score) | 55 ± 7.84 a |
Stroke location (right hemisphere) | Fronto-parietal haemorrhage (n = 3) Capsular nucleus ischemia (n = 2) Fronto-temporal hemorrhage (n = 2) |
Stroke location (left hemisphere) | Capsular nucleus ischemia (n = 2) Fronto-temporal haemorrhage (n = 1) |
Tasks | Cerebral Activation Areas | Threshold T | p-Value |
---|---|---|---|
Rough | Precentral gyrus, central sulcus, superior post-central gyrus right and left side | 0.83 | <0.001 |
Smooth | Precentral gyrus, central sulcus, superior post-central gyrus right and left side | 0.15 | <0.001 |
Grasping | Post-central gyrus, central sulcus right and left side | 2.93 | <0.001 |
Finger tapping | Precentral gyrus, post-central gyrus left side, superior post-central gyrus right side | 2.89 | <0.001 |
Tasks | Cerebral Activation Areas | Threshold T | p-Value |
---|---|---|---|
Rough | Right central sulcus | 3.05 | <0.001 |
Smooth | Right pre-central gyrus | 2.20 | <0.001 |
Grasping | Precentral gyrus, superior post-central gyrus right and left side | 2.30 | <0.001 |
Finger tapping | Left central and post-central gyrus | 2.42 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formica, C.; De Salvo, S.; Muscarà, N.; Bonanno, L.; Arcadi, F.A.; Lo Buono, V.; Acri, G.; Quartarone, A.; Marino, S. Applications of Near Infrared Spectroscopy and Mirror Therapy for Upper Limb Rehabilitation in Post-Stroke Patients: A Brain Plasticity Pilot Study. J. Clin. Med. 2024, 13, 6612. https://doi.org/10.3390/jcm13216612
Formica C, De Salvo S, Muscarà N, Bonanno L, Arcadi FA, Lo Buono V, Acri G, Quartarone A, Marino S. Applications of Near Infrared Spectroscopy and Mirror Therapy for Upper Limb Rehabilitation in Post-Stroke Patients: A Brain Plasticity Pilot Study. Journal of Clinical Medicine. 2024; 13(21):6612. https://doi.org/10.3390/jcm13216612
Chicago/Turabian StyleFormica, Caterina, Simona De Salvo, Nunzio Muscarà, Lilla Bonanno, Francesca Antonia Arcadi, Viviana Lo Buono, Giuseppe Acri, Angelo Quartarone, and Silvia Marino. 2024. "Applications of Near Infrared Spectroscopy and Mirror Therapy for Upper Limb Rehabilitation in Post-Stroke Patients: A Brain Plasticity Pilot Study" Journal of Clinical Medicine 13, no. 21: 6612. https://doi.org/10.3390/jcm13216612
APA StyleFormica, C., De Salvo, S., Muscarà, N., Bonanno, L., Arcadi, F. A., Lo Buono, V., Acri, G., Quartarone, A., & Marino, S. (2024). Applications of Near Infrared Spectroscopy and Mirror Therapy for Upper Limb Rehabilitation in Post-Stroke Patients: A Brain Plasticity Pilot Study. Journal of Clinical Medicine, 13(21), 6612. https://doi.org/10.3390/jcm13216612