Causal Roles of Ventral and Dorsal Neural Systems for Automatic and Control Self-Reference Processing: A Function Lesion Mapping Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.1.1. Patients
2.1.2. Healthy Controls
2.2. Neuropsychological Assessments
2.3. Principal Component Analysis (PCA)
2.4. Neuroimaging Assessment
2.4.1. Image Acquirement
2.4.2. Image Pre-Processing
2.4.3. Lesion Reconstruction
2.4.4. Voxel-Based Morphometry (VBM)
2.4.5. Track-Wise Lesion-Deficit Analysis
3. Results
3.1. Neuropsychological Profiles and the Self and Attentional Control Factors
3.2. Neuroimaging Findings: Grey Matter Damage
3.3. Neuroimaging Findings: White Matter Disconnections
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McGuire, W.J.; McGuire, C.V.; Cheever, J. The Self in Society: Effects of Social Contexts on the Sense of Self. Br. J. Soc. Psychol. 1986, 25, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Churchland, P.S. Self-Representation in Nervous Systems. Science 2002, 296, 308–310. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, S. Philosophical Conceptions of the Self: Implications for Cognitive Science. Trends Cogn. Sci. 2000, 4, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, L. An Experimental Study on the Self-Reference Effect. Sci. China C Life Sci. 2002, 45, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Lichtenberg, J.D. The Development of the Sense of Self. J. Am. Psychoanal. Assoc. 1975, 23, 453–484. [Google Scholar] [CrossRef] [PubMed]
- Conway, M.A.; Pleydell-Pearce, C.W. The Construction of Autobiographical Memories in the Self-Memory System. Psychol. Rev. 2000, 107, 261. [Google Scholar] [CrossRef]
- Sui, J.; Humphreys, G.W. The Ubiquitous Self: What the Properties of Self-bias Tell Us about the Self. Ann. N. Y. Acad. Sci. 2017, 1396, 222–235. [Google Scholar] [CrossRef]
- Desebrock, C.; Spence, C. The Self-Prioritization Effect: Self-Referential Processing in Movement Highlights Modulation at Multiple Stages. Atten. Percept. Psychophys. 2021, 83, 2656–2674. [Google Scholar] [CrossRef]
- Singh, D.; Karnick, H. Self-Prioritization Effect in Children and Adults. Front. Psychol. 2022, 13, 726230. [Google Scholar] [CrossRef]
- Palmero, L.B.; Martínez-Pérez, V.; Tortajada, M.; Campoy, G.; Fuentes, L.J. Testing the Modulation of Self-Related Automatic and Others-Related Controlled Processing by Chronotype and Time-of-Day. Conscious. Cogn. 2024, 118, 103633. [Google Scholar] [CrossRef]
- Apps, M.A.J.; Tsakiris, M. The Free-Energy Self: A Predictive Coding Account of Self-Recognition. Neurosci. Biobehav. Rev. 2014, 41, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, S.J.; Turk, D.J.; Macdonald, L.M.; Macrae, C.N. Yours or Mine? Ownership and Memory. Conscious. Cogn. 2008, 17, 312–318. [Google Scholar] [CrossRef]
- Golubickis, M.; Macrae, C.N. That’s Me in the Spotlight: Self-Relevance Modulates Attentional Breadth. Psychon. Bull. Rev. 2021, 28, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.; Knoblich, G. Self-Prioritization of Fully Unfamiliar Stimuli. Q. J. Exp. Psychol. 2019, 72, 2110–2120. [Google Scholar] [CrossRef]
- Woźniak, M.; Knoblich, G. Self-Prioritization Depends on Assumed Task-Relevance of Self-Association. Psychol. Res. 2022, 86, 1599–1614. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; He, X.; Humphreys, G.W. Perceptual Effects of Social Salience: Evidence from Self-Prioritization Effects on Perceptual Matching. J. Exp. Psychol. Hum. Percept. Perform. 2012, 38, 1105. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Humphreys, G.W. Aging Enhances Cognitive Biases to Friends but Not the Self. Psychon. Bull. Rev. 2017, 24, 2021–2030. [Google Scholar] [CrossRef]
- Sun, Y.; Fuentes, L.J.; Humphreys, G.W.; Sui, J. Try to See It My Way: Embodied Perspective Enhances Self and Friend-Biases in Perceptual Matching. Cognition 2016, 153, 108–117. [Google Scholar] [CrossRef]
- Sui, J.; Cao, B.; Song, Y.; Greenshaw, A.J. Individual Differences in Self-and Value-Based Reward Processing. Curr. Res. Behav. Sci. 2023, 4, 100095. [Google Scholar] [CrossRef]
- Żochowska, A.; Jakuszyk, P.; Nowicka, M.M.; Nowicka, A. The Self and a Close-Other: Differences between Processing of Faces and Newly Acquired Information. Cereb. Cortex 2023, 33, 2183–2199. [Google Scholar] [CrossRef]
- Schäfer, S.; Frings, C. Understanding Self-Prioritisation: The Prioritisation of Self-Relevant Stimuli and Its Relation to the Individual Self-Esteem. J. Cogn. Psychol. 2019, 31, 813–824. [Google Scholar] [CrossRef]
- Golubickis, M.; Persson, L.M.; Falbén, J.K.; Macrae, C.N. On Stopping Yourself: Self-Relevance Facilitates Response Inhibition. Atten. Percept. Psychophys. 2021, 83, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pérez, V.; Sandoval-Lentisco, A.; Tortajada, M.; Palmero, L.B.; Campoy, G.; Fuentes, L.J. Self-Prioritization Effect in the Attentional Blink Paradigm: Attention-Based or Familiarity-Based Effect? Conscious. Cogn. 2024, 117, 103607. [Google Scholar] [CrossRef] [PubMed]
- Conty, L.; George, N.; Hietanen, J.K. Watching Eyes Effects: When Others Meet the Self. Conscious. Cogn. 2016, 45, 184–197. [Google Scholar] [CrossRef] [PubMed]
- Renninger, K.A.; Hidi, S.E. Interest Development, Self-Related Information Processing, and Practice. Theory Pract. 2022, 61, 23–34. [Google Scholar] [CrossRef]
- Tacikowski, P.; Weijs, M.L.; Ehrsson, H.H. Perception of Our Own Body Influences Self-Concept and Self-Incoherence Impairs Episodic Memory. Iscience 2020, 23, 101429. [Google Scholar] [CrossRef]
- Keil, J.; Barutchu, A.; Desebrock, C.; Spence, C. More of Me: Self-Prioritization of Numeric Stimuli. J. Exp. Psychol. Hum. Percept. Perform. 2023, 49, 1518–1533. [Google Scholar] [CrossRef]
- Roy, N.; Karnick, H.; Verma, A. Towards the Self and Away from the Others: Evidence for Self-Prioritization Observed in an Approach Avoidance Task. Front. Psychol. 2023, 14, 1041157. [Google Scholar] [CrossRef]
- Bogdanova, O.V.; Bogdanov, V.B.; Dureux, A.; Farne, A.; Hadj-Bouziane, F. The Peripersonal Space in a Social World. Cortex 2021, 142, 28–46. [Google Scholar] [CrossRef]
- Blanke, O.; Slater, M.; Serino, A. Behavioral, Neural, and Computational Principles of Bodily Self-Consciousness. Neuron 2015, 88, 145–166. [Google Scholar] [CrossRef]
- Serino, A.; Alsmith, A.; Costantini, M.; Mandrigin, A.; Tajadura-Jimenez, A.; Lopez, C. Bodily Ownership and Self-Location: Components of Bodily Self-Consciousness. Conscious. Cogn. 2013, 22, 1239–1252. [Google Scholar] [CrossRef] [PubMed]
- Symons, C.S.; Johnson, B.T. The Self-Reference Effect in Memory: A Meta-Analysis. Psychol. Bull. 1997, 121, 371. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; He, X.; Rotsthein, P.; Sui, J. Dynamically Orienting Your Own Face Facilitates the Automatic Attraction of Attention. Cogn. Neurosci. 2016, 7, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Sun, Y.; Peng, K.; Humphreys, G.W. The Automatic and the Expected Self: Separating Self- and Familiarity Biases Effects by Manipulating Stimulus Probability. Atten. Percept. Psychophys. 2014, 76, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- Northoff, G. How Does the ‘Rest-Self Overlap’ Mediate the Qualitative and Automatic Features of Self-Reference? Cogn. Neurosci. 2016, 7, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Herbert, C.; Pauli, P.; Herbert, B.M. Self-Reference Modulates the Processing of Emotional Stimuli in the Absence of Explicit Self-Referential Appraisal Instructions. Soc. Cogn. Affect. Neurosci. 2011, 6, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.P.; Macedo, J.; Oliveira, H.M.; Lages, A.; Hernández-Cabrera, J.; Pinheiro, A.P. Self-Reference Is a Fast-Acting Automatic Mechanism on Emotional Word Processing: Evidence from a Masked Priming Affective Categorisation Task. J. Cogn. Psychol. 2019, 31, 317–325. [Google Scholar] [CrossRef]
- Humphreys, G.W.; Sui, J. Attentional Control and the Self: The Self-Attention Network (SAN). Cogn. Neurosci. 2016, 7, 5–17. [Google Scholar] [CrossRef]
- Sui, J.; Gu, X. Self as Object: Emerging Trends in Self Research. Trends Neurosci. 2017, 40, 643–653. [Google Scholar] [CrossRef]
- Sui, J.; Rotshtein, P. Self-Prioritization and the Attentional Systems. Curr. Opin. Psychol. 2019, 29, 148–152. [Google Scholar] [CrossRef]
- Scalabrini, A.; Mucci, C.; Northoff, G. Is Our Self Related to Personality? A Neuropsychodynamic Model. Front. Hum. Neurosci. 2018, 12, 346. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, P.L.; Wittmann, M.K.; Apps, M.A.; Klein-Flügge, M.C.; Crockett, M.J.; Humphreys, G.W.; Rushworth, M.F. Neural Mechanisms for Learning Self and Other Ownership. Nat. Commun. 2018, 9, 4747. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Wang, M.; Northoff, G. Linking Bodily, Environmental and Mental States in the Self—A Three-Level Model Based on a Meta-Analysis. Neurosci. Biobehav. Rev. 2020, 115, 77–95. [Google Scholar] [CrossRef] [PubMed]
- Soch, J.; Deserno, L.; Assmann, A.; Barman, A.; Walter, H.; Richardson-Klavehn, A.; Schott, B.H. Inhibition of Information Flow to the Default Mode Network during Self-Reference versus Reference to Others. Cereb. Cortex 2017, 27, 3930–3942. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, T.W.; Johnson, S.C. Self-Appraisal Decisions Evoke Dissociated Dorsal—Ventral aMPFC Networks. Neuroimage 2006, 30, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Yaoi, K.; Osaka, M.; Osaka, N. Neural Correlates of the Self-Reference Effect: Evidence from Evaluation and Recognition Processes. Front. Hum. Neurosci. 2015, 9, 383. [Google Scholar] [CrossRef] [PubMed]
- Haciahmet, C.C.; Golubickis, M.; Schäfer, S.; Frings, C.; Pastötter, B. The Oscillatory Fingerprints of Self-prioritization: Novel Markers in Spectral EEG for Self-relevant Processing. Psychophysiology 2023, 60, e14396. [Google Scholar] [CrossRef] [PubMed]
- Davey, C.G.; Pujol, J.; Harrison, B.J. Mapping the Self in the Brain’s Default Mode Network. NeuroImage 2016, 132, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Damme, K.S.; Pelletier-Baldelli, A.; Cowan, H.R.; Orr, J.M.; Mittal, V.A. Distinct and Opposite Profiles of Connectivity during Self-Reference Task and Rest in Youth at Clinical High Risk for Psychosis. Hum. Brain Mapp. 2019, 40, 3254–3264. [Google Scholar] [CrossRef]
- Gaubert, M.; Villain, N.; Landeau, B.; Mezenge, F.; Egret, S.; Perrotin, A.; Belliard, S.; de La Sayette, V.; Eustache, F.; Desgranges, B. Neural Correlates of Self-Reference Effect in Early Alzheimer’s Disease. J. Alzheimers Dis. 2017, 56, 717–731. [Google Scholar] [CrossRef]
- Sui, J.; Chechlacz, M.; Humphreys, G.W. Dividing the Self: Distinct Neural Substrates of Task-Based and Automatic Self-Prioritization after Brain Damage. Cognition 2012, 122, 150–162. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Chechlacz, M.; Rotshtein, P.; Humphreys, G.W. Lesion-Symptom Mapping of Self-Prioritization in Explicit Face Categorization: Distinguishing Hypo-and Hyper-Self-Biases. Cereb. Cortex 2015, 25, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; He, X.; Yi, D.; Sui, J. Temporal Properties of Self-Prioritization. Entropy 2024, 26, 242. [Google Scholar] [CrossRef]
- Sui, J.; He, X.; Golubickis, M.; Svensson, S.L.; Macrae, C.N. Electrophysiological Correlates of Self-Prioritization. Conscious. Cogn. 2023, 108, 103475. [Google Scholar] [CrossRef]
- Frewen, P.; Schroeter, M.L.; Riva, G.; Cipresso, P.; Fairfield, B.; Padulo, C.; Kemp, A.H.; Palaniyappan, L.; Owolabi, M.; Kusi-Mensah, K. Neuroimaging the Consciousness of Self: Review, and Conceptual-Methodological Framework. Neurosci. Biobehav. Rev. 2020, 112, 164–212. [Google Scholar] [CrossRef]
- Northoff, G.; Heinzel, A.; De Greck, M.; Bermpohl, F.; Dobrowolny, H.; Panksepp, J. Self-Referential Processing in Our Brain—A Meta-Analysis of Imaging Studies on the Self. Neuroimage 2006, 31, 440–457. [Google Scholar] [CrossRef]
- Murray, R.J.; Schaer, M.; Debbané, M. Degrees of Separation: A Quantitative Neuroimaging Meta-Analysis Investigating Self-Specificity and Shared Neural Activation between Self- and Other-Reflection. Neurosci. Biobehav. Rev. 2012, 36, 1043–1059. [Google Scholar] [CrossRef]
- D’Argembeau, A.; Collette, F.; Van der Linden, M.; Laureys, S.; Del Fiore, G.; Degueldre, C.; Luxen, A.; Salmon, E. Self-Referential Reflective Activity and Its Relationship with Rest: A PET Study. Neuroimage 2005, 25, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Qin, P.; Northoff, G. How Is Our Self Related to Midline Regions and the Default-Mode Network? NeuroImage 2011, 57, 1221–1233. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Moran, J.M.; Nieto-Castañón, A.; Triantafyllou, C.; Saxe, R.; Gabrieli, J.D. Associations and Dissociations between Default and Self-Reference Networks in the Human Brain. Neuroimage 2011, 55, 225–232. [Google Scholar] [CrossRef]
- Kolvoort, I.R.; Wainio-Theberge, S.; Wolff, A.; Northoff, G. Temporal Integration as “Common Currency” of Brain and Self-Scale-free Activity in Resting-state EEG Correlates with Temporal Delay Effects on Self-relatedness. Hum. Brain Mapp. 2020, 41, 4355–4374. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.; Di Giovanni, D.A.; Gómez-Pilar, J.; Nakao, T.; Huang, Z.; Longtin, A.; Northoff, G. The Temporal Signature of Self: Temporal Measures of Resting-state EEG Predict Self-consciousness. Hum. Brain Mapp. 2019, 40, 789–803. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Rotshtein, P.; Humphreys, G.W. Coupling Social Attention to the Self Forms a Network for Personal Significance. Proc. Natl. Acad. Sci. USA 2013, 110, 7607–7612. [Google Scholar] [CrossRef] [PubMed]
- Northoff, G.; Bermpohl, F. Cortical Midline Structures and the Self. Trends Cogn. Sci. 2004, 8, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Chavez, R.S.; Heatherton, T.F.; Wagner, D.D. Neural Population Decoding Reveals the Intrinsic Positivity of the Self. Cereb. Cortex 2017, 27, 5222–5229. [Google Scholar] [CrossRef] [PubMed]
- Heleven, E.; Van Overwalle, F. The Neural Representation of the Self in Relation to Close Others Using fMRI Repetition Suppression. Soc. Neurosci. 2019, 14, 717–728. [Google Scholar] [CrossRef] [PubMed]
- D’Argembeau, A. On the Role of the Ventromedial Prefrontal Cortex in Self-Processing: The Valuation Hypothesis. Front. Hum. Neurosci. 2013, 7, 372. [Google Scholar] [CrossRef]
- Samson, D.; Apperly, I.A.; Chiavarino, C.; Humphreys, G.W. Left Temporoparietal Junction Is Necessary for Representing Someone Else’s Belief. Nat. Neurosci. 2004, 7, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Xiao, Y.; Xie, H.; Manwaring, S.S.; Farmer, C.; Thompson, L.; D’Souza, P.; Thurm, A.; Redcay, E. Posterior Superior Temporal Cortex Connectivity Is Related to Social Communication in Toddlers. Infant Behav. Dev. 2023, 71, 101831. [Google Scholar] [CrossRef]
- Martínez-Pérez, V.; Campoy, G.; Palmero, L.B.; Fuentes, L.J. Examining the Dorsolateral and Ventromedial Prefrontal Cortex Involvement in the Self-Attention Network: A Randomized, Sham-Controlled, Parallel Group, Double-Blind, and Multichannel HD-tDCS Study. Front. Neurosci. 2020, 14, 683. [Google Scholar] [CrossRef]
- Leszkowicz, E.; Maio, G.R.; Linden, D.E.J.; Ihssen, N. Neural Coding of Human Values Is Underpinned by Brain Areas Representing the Core Self in the Cortical Midline Region. Soc. Neurosci. 2021, 16, 486–499. [Google Scholar] [CrossRef] [PubMed]
- Isoda, M. The Role of the Medial Prefrontal Cortex in Moderating Neural Representations of Self and Other in Primates. Annu. Rev. Neurosci. 2021, 44, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Liu, M.; Mevorach, C.; Humphreys, G.W. The Salient Self: The Left Intraparietal Sulcus Responds to Social as Well as Perceptual-Salience after Self-Association. Cereb. Cortex 2015, 25, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Bi, T.; Chen, A.; Egner, T. Ventromedial Prefrontal Cortex Drives the Prioritization of Self-Associated Stimuli in Working Memory. J. Neurosci. 2021, 41, 2012–2023. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, S.; Frings, C. Searching for the Inner Self: Evidence against a Direct Dependence of the Self-Prioritization Effect on the Ventro-Medial Prefrontal Cortex. Exp. Brain Res. 2019, 237, 247–256. [Google Scholar] [CrossRef]
- Liang, Q.; Zhang, B.; Fu, S.; Sui, J.; Wang, F. The Roles of the LpSTS and DLPFC in Self-prioritization: A Transcranial Magnetic Stimulation Study. Hum. Brain Mapp. 2022, 43, 1381–1393. [Google Scholar] [CrossRef] [PubMed]
- Soutschek, A.; Ruff, C.C.; Strombach, T.; Kalenscher, T.; Tobler, P.N. Brain Stimulation Reveals Crucial Role of Overcoming Self-Centeredness in Self-Control. Sci. Adv. 2016, 2, e1600992. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.; Enock, F.; Ralph, J.; Humphreys, G.W. Dissociating Hyper and Hypoself Biases to a Core Self-Representation. Cortex 2015, 70, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Abdi, H.; Williams, L.J. Principal Component Analysis. WIREs Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Bickerton, W.-L.; Riddoch, M.J.; Samson, D.; Balani, A.B.; Mistry, B.; Humphreys, G.W. Systematic Assessment of Apraxia and Functional Predictions from the Birmingham Cognitive Screen. J. Neurol. Neurosurg. Psychiatry 2012, 83, 513–521. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K.J. Unified Segmentation. NeuroImage 2005, 26, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Thiebaut de Schotten, M.; Tomaiuolo, F.; Aiello, M.; Merola, S.; Silvetti, M.; Lecce, F.; Bartolomeo, P.; Doricchi, F. Damage to White Matter Pathways in Subacute and Chronic Spatial Neglect: A Group Study and 2 Single-Case Studies with Complete Virtual “in Vivo” Tractography Dissection. Cereb. Cortex 2014, 24, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Seghier, M.L.; Ramlackhansingh, A.; Crinion, J.; Leff, A.P.; Price, C.J. Lesion Identification Using Unified Segmentation-Normalisation Models and Fuzzy Clustering. NeuroImage 2008, 41, 1253–1266. [Google Scholar] [CrossRef]
- Humphreys, G.W. BCoS Brain Behaviour Analysis; Psychology Press: Hove, UK, 2012. [Google Scholar]
- Fabrigar, L.R.; Wegener, D.T.; MacCallum, R.C.; Strahan, E.J. Evaluating the Use of Exploratory Factor Analysis in Psychological Research. Psychol. Methods 1999, 4, 272–299. [Google Scholar] [CrossRef]
- Kim, J.-O.; Mueller, C.W. Factor Analysis: Statistical Methods and Practical Issues; SAGE: Beverly Hills, CA, USA, 1978; ISBN 978-0-8039-1166-6. [Google Scholar]
- Bartlett, M.S.; Fowler, R.H. Properties of Sufficiency and Statistical Tests. Proc. R. Soc. Lond. Ser.-Math. Phys. Sci. 1997, 160, 268–282. [Google Scholar] [CrossRef]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark Iv. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Crinion, J.; Ashburner, J.; Leff, A.; Brett, M.; Price, C.; Friston, K. Spatial Normalization of Lesioned Brains: Performance Evaluation and Impact on fMRI Analyses. NeuroImage 2007, 37, 866–875. [Google Scholar] [CrossRef]
- Worsley, K.J. Developments in Random Field Theory. Hum. Brain Funct. 2003, 2, 881–886. [Google Scholar]
- Leff, A.P.; Schofield, T.M.; Crinion, J.T.; Seghier, M.L.; Grogan, A.; Green, D.W.; Price, C.J. The Left Superior Temporal Gyrus Is a Shared Substrate for Auditory Short-Term Memory and Speech Comprehension: Evidence from 210 Patients with Stroke. Brain 2009, 132, 3401–3410. [Google Scholar] [CrossRef]
- Chechlacz, M.; Terry, A.; Demeyere, N.; Douis, H.; Bickerton, W.-L.; Rotshtein, P.; Humphreys, G.W. Common and Distinct Neural Mechanisms of Visual and Tactile Extinction: A Large Scale VBM Study in Sub-Acute Stroke. NeuroImage Clin. 2013, 2, 291–302. [Google Scholar] [CrossRef]
- Chechlacz, M.; Rotshtein, P.; Bickerton, W.-L.; Hansen, P.C.; Deb, S.; Humphreys, G.W. Separating Neural Correlates of Allocentric and Egocentric Neglect: Distinct Cortical Sites and Common White Matter Disconnections. Cogn. Neuropsychol. 2010, 27, 277–303. [Google Scholar] [CrossRef]
- The MathWorks Inc. MATLAB, Version: 7.14.0 (R2012a); The MathWorks Inc.: Natick, MA, USA, 2012. Available online: https://www.mathworks.com (accessed on 28 May 2024).
- Ashburner, J.; Friston, K.J. Voxel-Based Morphometry—The Methods. Neuroimage 2000, 11, 805–821. [Google Scholar] [CrossRef]
- Kiebel, S.; Holmes, A. The General Linear Model; Elsevier: Amsterdam, The Netherlands, 2007; Chapter 8. [Google Scholar]
- Duvernoy, H.M. The Human Brain: Surface, Three-Dimensional Sectional Anatomy with MRI, and Blood Supply; Springer Science & Business Media: Vienna, Austria, 1999. [Google Scholar]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. NeuroImage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Woolsey, T.A.; Hanaway, J.; Gado, M.H. The Brain Atlas: A Visual Guide to the Human Central Nervous System; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Thiebaut de Schotten, M.; Ffytche, D.H.; Bizzi, A.; Dell’Acqua, F.; Allin, M.; Walshe, M.; Murray, R.; Williams, S.C.; Murphy, D.G.; Catani, M. Atlasing Location, Asymmetry and Inter-Subject Variability of White Matter Tracts in the Human Brain with MR Diffusion Tractography. Neuroimage 2010, 54, 49–59. [Google Scholar] [CrossRef] [PubMed]
- de Schotten, M.T.; Dell’Acqua, F.; Forkel, S.J.; Simmons, A.; Vergani, F.; Murphy, D.G.M.; Catani, M. A Lateralized Brain Network for Visuospatial Attention. Nat. Neurosci. 2011, 14, 1245–1246. [Google Scholar] [CrossRef] [PubMed]
- Rojkova, K.; Volle, E.; Urbanski, M.; Humbert, F.; Dell’Acqua, F.; de Schotten, M.T. Atlasing the frontal lobe connections and their variability due to age and education: A spherical deconvolution tractography study. Brain Struct. Funct. 2016, 221, 1751–1766. [Google Scholar] [CrossRef]
- Sui, J. Self-Reference Acts as a Golden Thread in Binding. Trends Cogn. Sci. 2016, 20, 482–483. [Google Scholar] [CrossRef]
- Sui, J.; Humphreys, G.W. The Integrative Self: How Self-Reference Integrates Perception and Memory. Trends Cogn. Sci. 2015, 19, 719–728. [Google Scholar] [CrossRef]
- Stendardi, D.; Biscotto, F.; Bertossi, E.; Ciaramelli, E. Present and Future Self in Memory: The Role of vmPFC in the Self-Reference Effect. Soc. Cogn. Affect. Neurosci. 2021, 16, 1205–1213. [Google Scholar] [CrossRef]
- Philippi, C.L.; Duff, M.C.; Denburg, N.L.; Tranel, D.; Rudrauf, D. Medial PFC Damage Abolishes the Self-Reference Effect. J. Cogn. Neurosci. 2012, 24, 475–481. [Google Scholar] [CrossRef]
- Wagner, D.D.; Haxby, J.V.; Heatherton, T.F. The Representation of Self and Person Knowledge in the Medial Prefrontal Cortex. WIREs Cogn. Sci. 2012, 3, 451–470. [Google Scholar] [CrossRef]
- Pizzagalli, D.A.; Roberts, A.C. Prefrontal Cortex and Depression. Neuropsychopharmacology 2022, 47, 225–246. [Google Scholar] [CrossRef]
- George, M.S.; Ketter, T.A.; Post, R.M. Prefrontal Cortex Dysfunction in Clinical Depression. Depression 1994, 2, 59–72. [Google Scholar] [CrossRef]
- Murray, E.A.; Wise, S.P.; Drevets, W.C. Localization of Dysfunction in Major Depressive Disorder: Prefrontal Cortex and Amygdala. Biol. Psychiatry 2011, 69, e43–e54. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Li, M.; Qin, W.; Xie, Y.; Zhao, G.; Wang, Y.; Yang, C.; Zhang, B.; Jing, Y. Childhood Sexual Abuse Related to Brain Activity Abnormalities in Right Inferior Temporal Gyrus among Major Depressive Disorder. Neurosci. Lett. 2023, 806, 137196. [Google Scholar] [CrossRef]
- Liu, Y.S.; Song, Y.; Lee, N.A.; Bennett, D.M.; Button, K.S.; Greenshaw, A.; Cao, B.; Sui, J. Depression Screening Using a Non-Verbal Self-Association Task: A Machine-Learning Based Pilot Study. J. Affect. Disord. 2022, 310, 87–95. [Google Scholar] [CrossRef]
- Sui, J.; Humphreys, G.W. The Self Survives Extinction: Self-Association Biases Attention in Patients with Visual Extinction. Cortex 2017, 95, 248–256. [Google Scholar] [CrossRef]
- Molnar-Szakacs, I.; Uddin, L.Q. Self-Processing and the Default Mode Network: Interactions with the Mirror Neuron System. Front. Hum. Neurosci. 2013, 7, 571. [Google Scholar] [CrossRef]
- Knyazev, G. EEG Correlates of Self-Referential Processing. Front. Hum. Neurosci. 2013, 7, 264. [Google Scholar] [CrossRef]
- Tian, Y.; Margulies, D.S.; Breakspear, M.; Zalesky, A. Topographic Organization of the Human Subcortex Unveiled with Functional Connectivity Gradients. Nat. Neurosci. 2020, 23, 1421–1432. [Google Scholar] [CrossRef]
- Caverzasi, E.; Papinutto, N.; Amirbekian, B.; Berger, M.S.; Henry, R.G. Q-Ball of Inferior Fronto-Occipital Fasciculus and Beyond. PLoS ONE 2014, 9, e100274. [Google Scholar] [CrossRef]
- Martino, J.; Brogna, C.; Robles, S.G.; Vergani, F.; Duffau, H. Anatomic Dissection of the Inferior Fronto-Occipital Fasciculus Revisited in the Lights of Brain Stimulation Data. Cortex 2010, 46, 691–699. [Google Scholar] [CrossRef]
- Zhang, F.; Daducci, A.; He, Y.; Schiavi, S.; Seguin, C.; Smith, R.E.; Yeh, C.-H.; Zhao, T.; O’Donnell, L.J. Quantitative Mapping of the Brain’s Structural Connectivity Using Diffusion MRI Tractography: A Review. Neuroimage 2022, 249, 118870. [Google Scholar] [CrossRef]
- Sui, J.; Humphreys, G.W. Self-Referential Processing Is Distinct from Semantic Elaboration: Evidence from Long-Term Memory Effects in a Patient with Amnesia and Semantic Impairments. Neuropsychologia 2013, 51, 2663–2673. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Sui, J. Decoding Individual Differences in Self-Prioritization from the Resting-State Functional Connectome. NeuroImage 2023, 276, 120205. [Google Scholar] [CrossRef]
Factor | Size (Voxels) | Z-Score | Coordinates (X, Y, Z) | Brain Structure |
---|---|---|---|---|
Automatic self-reference | ||||
1384 | 3.44 | 34 26 −42 | Right ITG 1 | |
50 | 3.41 | −10 50 4 | Left vmPFC 2 | |
Control processing | ||||
405 | 3.93 | 44 −46 62 | Right IPL 3 | |
275 | 3.74 | −28 −66 52 | Left IPL 3 | |
343 | 3.39 | −46 −10 4 | Left AIC 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, J.; Rotshtein, P.; Lu, Z.; Chechlacz, M. Causal Roles of Ventral and Dorsal Neural Systems for Automatic and Control Self-Reference Processing: A Function Lesion Mapping Study. J. Clin. Med. 2024, 13, 4170. https://doi.org/10.3390/jcm13144170
Sui J, Rotshtein P, Lu Z, Chechlacz M. Causal Roles of Ventral and Dorsal Neural Systems for Automatic and Control Self-Reference Processing: A Function Lesion Mapping Study. Journal of Clinical Medicine. 2024; 13(14):4170. https://doi.org/10.3390/jcm13144170
Chicago/Turabian StyleSui, Jie, Pia Rotshtein, Zhuoen Lu, and Magdalena Chechlacz. 2024. "Causal Roles of Ventral and Dorsal Neural Systems for Automatic and Control Self-Reference Processing: A Function Lesion Mapping Study" Journal of Clinical Medicine 13, no. 14: 4170. https://doi.org/10.3390/jcm13144170
APA StyleSui, J., Rotshtein, P., Lu, Z., & Chechlacz, M. (2024). Causal Roles of Ventral and Dorsal Neural Systems for Automatic and Control Self-Reference Processing: A Function Lesion Mapping Study. Journal of Clinical Medicine, 13(14), 4170. https://doi.org/10.3390/jcm13144170