The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum
Abstract
1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee; Maddox, T.M.; Januzzi, J.L., Jr.; Allen, L.A.; Breathett, K.; Butler, J.; Davis, L.L.; Fonarow, G.C.; Ibrahim, N.E.; Lindenfeld, J.; et al. 2021 Update to the 2017 ACC Expert Consensus Decision Pathway for Optimization of Heart Failure Treatment: Answers to 10 Pivotal Issues about Heart Failure with Reduced Ejection Fraction: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2021, 77, 772–810. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Lyass, A.; Enserro, D.; Larson, M.G.; Ho, J.E.; Kizer, J.R.; Gottdiener, J.S.; Psaty, B.M.; Vasan, R.S. Temporal trends in the incidence of and mortality associated with heart failure with preserved and reduced ejection fraction. JACC Heart Fail. 2018, 6, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Greene, S.J.; Bauersachs, J.; Brugts, J.J.; Ezekowitz, J.A.; Lam, C.S.P.; Lund, L.H.; Ponikowski, P.; Voors, A.A.; Zannad, F.; Zieroth, S.; et al. Worsening Heart Failure: Nomenclature, Epidemiology, and Future Directions: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 413–424. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, A.; Prosperi, S.; Severino, P.; Myftari, V.; Labbro Francia, A.; Cestiè, C.; Pierucci, N.; Marek-Iannucci, S.; Mariani, M.V.; Germanò, R.; et al. Current Approaches to Worsening Heart Failure: Pathophysiological and Molecular Insights. Int. J. Mol. Sci. 2024, 25, 1574. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Albert, N.M.; Coats, A.J.S.; Anker, S.D.; Bayes-Genis, A.; Butler, J.; Chioncel, O.; Defilippi, C.R.; Drazner, M.H.; Felker, G.M.; et al. Natriuretic Peptides: Role in the Diagnosis and Management of Heart Failure: A Scientific Statement from the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. J. Card. Fail. 2023, 29, 787–804. [Google Scholar] [CrossRef] [PubMed]
- Logeart, D.; Thabut, G.; Jourdain, P.; Chavelas, C.; Beyne, P.; Beauvais, F.; Bouvier, E.; Solal, A.C. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J. Am. Coll. Cardiol. 2004, 43, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Kociol, R.D.; Horton, J.R.; Fonarow, G.C.; Reyes, E.M.; Shaw, L.K.; O’Connor, C.M.; Felker, G.M.; Hernandez, A.F. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: Data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims. Circ. Heart Fail. 2011, 4, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Ezekowitz, J.A.; Alemayehu, W.; Rathwell, S.; Grant, A.D.; Fiuzat, M.; Whellan, D.J.; Ahmad, T.; Adams, K.; Piña, I.L.; Cooper, L.S.; et al. The influence of comorbidities on achieving an N-terminal pro-b-type natriuretic peptide target: A secondary analysis of the GUIDE-IT trial. ESC Heart Fail. 2022, 9, 77–86. [Google Scholar] [CrossRef]
- Del Carlo, C.H.; O’Connor, C.M. Cardiac troponins in congestive heart failure. Am. Heart J. 1999, 138 Pt 1, 646–653. [Google Scholar] [CrossRef]
- Garg, P.; Morris, P.; Fazlanie, A.L.; Vijayan, S.; Dancso, B.; Dastidar, A.G.; Plein, S.; Mueller, C.; Haaf, P. Cardiac biomarkers of acute coronary syndrome: From history to high-sensitivity cardiac troponin. Intern. Emerg. Med. 2017, 12, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Chauin, A. The Main Causes and Mechanisms of Increase in Cardiac Troponin Concentrations Other than Acute Myocardial Infarction (Part 1): Physical Exertion, Inflammatory Heart Disease, Pulmonary Embolism, Renal Failure, Sepsis. Vasc. Health Risk Manag. 2021, 17, 601–617. [Google Scholar] [CrossRef]
- Sandoval, Y.; Apple, F.S.; Mahler, S.A.; Body, R.; Collinson, P.O.; Jaffe, A.S.; International Federation of Clinical Chemistry and Laboratory Medicine Committee on the Clinical Application of Cardiac Biomarkers. High-Sensitivity Cardiac Troponin and the 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guidelines for the Evaluation and Diagnosis of Acute Chest Pain. Circulation 2022, 146, 569–581. [Google Scholar] [CrossRef]
- Sato, Y.; Yamada, T.; Taniguchi, R.; Nagai, K.; Makiyama, T.; Okada, H.; Kataoka, K.; Ito, H.; Matsumori, A.; Sasayama, S.; et al. Persistently increased serum concentrations of cardiac troponin t in patients with idiopathic dilated cardiomyopathy are predictive of adverse outcomes. Circulation 2001, 103, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Setsuta, K.; Seino, Y.; Ogawa, T.; Arao, M.; Miyatake, Y.; Takano, T. Use of cytosolic and myofibril markers in the detection of ongoing myocardial damage in patients with chronic heart failure. Am. J. Med. 2002, 113, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Kociol, R.D.; Pang, P.S.; Gheorghiade, M.; Fonarow, G.C.; O’Connor, C.M.; Felker, G.M. Troponin elevation in heart failure prevalence, mechanisms, and clinical implications. J. Am. Coll. Cardiol. 2010, 56, 1071–1078. [Google Scholar] [CrossRef]
- Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the diagnosis and management of heart failure. Heart Fail. Rev. 2022, 27, 625–643. [Google Scholar] [CrossRef]
- Lazar, D.R.; Lazar, F.L.; Homorodean, C.; Cainap, C.; Focsan, M.; Cainap, S.; Olinic, D.M. High-Sensitivity Troponin: A Review on Characteristics, Assessment, and Clinical Implications. Dis. Markers 2022, 2022, 9713326. [Google Scholar] [CrossRef]
- Latini, R.; Masson, S.; Anand, I.S.; Missov, E.; Carlson, M.; Vago, T.; Angelici, L.; Barlera, S.; Parrinello, G.; Maggioni, A.P.; et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 2007, 116, 1242–1249. [Google Scholar] [CrossRef]
- You, J.J.; Austin, P.C.; Alter, D.A.; Ko, D.T.; Tu, J.V. Relation between cardiac troponin I and mortality in acute decompensated heart failure. Am. Heart J. 2007, 153, 462–470. [Google Scholar] [CrossRef]
- Myhre, P.L.; O’Meara, E.; Claggett, B.L.; de Denus, S.; Jarolim, P.; Anand, I.S.; Beldhuis, I.E.; Fleg, J.L.; Lewis, E.; Pitt, B.; et al. Cardiac Troponin I and Risk of Cardiac Events in Patients with Heart Failure and Preserved Ejection Fraction. Circ. Heart Fail. 2018, 11, e005312. [Google Scholar] [CrossRef] [PubMed]
- Yan, I.; Börschel, C.S.; Neumann, J.T.; Sprünker, N.A.; Makarova, N.; Kontto, J.; Kuulasmaa, K.; Salomaa, V.; Magnussen, C.; Iacoviello, L.; et al. High-Sensitivity Cardiac Troponin I Levels and Prediction of Heart Failure: Results from the BiomarCaRE Consortium. JACC Heart Fail. 2020, 8, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Stelzle, D.; Shah, A.S.V.; Anand, A.; Strachan, F.E.; Chapman, A.R.; Denvir, M.A.; Mills, N.L.; McAllister, D.A. High-sensitivity cardiac troponin I and risk of heart failure in patients with suspected acute coronary syndrome: A cohort study. Eur. Heart J. Qual. Care Clin. Outcomes 2018, 4, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Del Carlo, C.H.; Pereira-Barretto, A.C.; Cassaro-Strunz, C.; Latorre, M.d.R.; Ramires, J.A. Serial measure of cardiac troponin T levels for prediction of clinical events in decompensated heart failure. J. Card. Fail. 2004, 10, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A.; Januzzi, J.L., Jr.; Vergaro, G.; Ripoli, A.; Latini, R.; Masson, S.; Magnoli, M.; Anand, I.S.; Cohn, J.N.; Tavazzi, L.; et al. Prognostic Value of High-Sensitivity Troponin T in Chronic Heart Failure: An Individual Patient Data Meta-Analysis. Circulation 2018, 137, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Masson, S.; Anand, I.; Favero, C.; Barlera, S.; Vago, T.; Bertocchi, F.; Maggioni, A.P.; Tavazzi, L.; Tognoni, G.; Cohn, J.N.; et al. Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: Data from 2 large randomized clinical trials. Circulation 2012, 125, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Peacock, W.F., 4th; De Marco, T.; Fonarow, G.C.; Diercks, D.; Wynne, J.; Apple, F.S.; Wu, A.H. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med. 2008, 358, 2117–2126. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Golwala, H.; Sheng, S.; DeVore, A.D.; Hernandez, A.F.; Bhatt, D.L.; Heidenreich, P.A.; Yancy, C.W.; de Lemos, J.A.; Fonarow, G.C. Factors Associated with and Prognostic Implications of Cardiac Troponin Elevation in Decompensated Heart Failure with Preserved Ejection Fraction: Findings from the American Heart Association Get with the Guidelines-Heart Failure Program. JAMA Cardiol. 2017, 2, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.D.W.; Dobbin, S.J.H.; Pettit, S.J.; Di Angelantonio, E.; Willeit, P. High-Sensitivity Cardiac Troponin and New-Onset Heart Failure: A Systematic Review and Meta-Analysis of 67,063 Patients with 4165 Incident Heart Failure Events. JACC Heart Fail. 2018, 6, 187–197. [Google Scholar] [CrossRef]
- Westermann, D.; Neumann, J.T.; Sörensen, N.A.; Blankenberg, S. High-sensitivity assays for troponin in patients with cardiac disease. Nat. Rev. Cardiol. 2017, 14, 472–483. [Google Scholar] [CrossRef]
- Januzzi, J.L., Jr.; Filippatos, G.; Nieminen, M.; Gheorghiade, M. Troponin elevation in patients with heart failure: On behalf of the third Universal Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Eur. Heart J. 2012, 33, 2265–2271. [Google Scholar] [CrossRef]
- Miller, W.L.; Hartman, K.A.; Burritt, M.F.; Grill, D.E.; Jaffe, A.S. Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J. Am. Coll. Cardiol. 2009, 54, 1715–1721. [Google Scholar] [CrossRef]
- Potluri, S.; Ventura, H.O.; Mulumudi, M.; Mehra, M.R. Cardiac troponin levels in heart failure. Cardiol. Rev. 2004, 12, 21–25. [Google Scholar] [CrossRef]
- Meijers, W.C.; Bayes-Genis, A.; Mebazaa, A.; Bauersachs, J.; Cleland, J.G.F.; Coats, A.J.S.; Januzzi, J.L.; Maisel, A.S.; McDonald, K.; Mueller, T.; et al. Circulating heart failure biomarkers beyond natriuretic peptides: Review from the Biomarker Study Group of the Heart Failure Association (HFA), European Society of Cardiology (ESC). Eur. J. Heart Fail. 2021, 23, 1610–1632. [Google Scholar] [CrossRef] [PubMed]
- Gherasim, L. Troponins in Heart Failure—A Perpetual Challenge. Maedica 2019, 14, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Madelaire, C.; Gustafsson, F.; Stevenson, L.W.; Kristensen, S.L.; Køber, L.; Andersen, J.; D’Souza, M.; Biering-Sørensen, T.; Andersson, C.; Torp-Pedersen, C.; et al. One-Year Mortality after Intensification of Outpatient Diuretic Therapy. J. Am. Heart Assoc. 2020, 9, e016010. [Google Scholar] [CrossRef]
- Palazzuoli, A.; Beltrami, M. Are HFpEF and HFmrEF So Different? The Need to Understand Distinct Phenotypes. Front. Cardiovasc. Med. 2021, 8, 676658. [Google Scholar] [CrossRef]
- Li, P.; Zhao, H.; Zhang, J.; Ning, Y.; Tu, Y.; Xu, D.; Zeng, Q. Similarities and Differences between HFmrEF and HFpEF. Front. Cardiovasc. Med. 2021, 8, 678614. [Google Scholar] [CrossRef]
- Simmonds, S.J.; Cuijpers, I.; Heymans, S.; Jones, E.A.V. Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead in an Improved Pathological Understanding. Cells 2020, 9, 242. [Google Scholar] [CrossRef] [PubMed]
- Streng, K.W.; Nauta, J.F.; Hillege, H.L.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; Lang, C.C.; Metra, M.; Ng, L.L.; et al. Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int. J. Cardiol. 2018, 271, 132–139. [Google Scholar] [CrossRef]
- Santas, E.; de la Espriella, R.; Palau, P.; Miñana, G.; Amiguet, M.; Sanchis, J.; Lupón, J.; Bayes-Genís, A.; Chorro, F.J.; Villota, J.N. Rehospitalization burden and morbidity risk in patients with heart failure with mid-range ejection fraction. ESC Heart Fail. 2020, 7, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Agdashian, D.; Daniels, L.B. What Is the Clinical Utility of Cardiac Troponins in Heart Failure? Are They Modifiable beyond Their Prognostic Value? Curr. Heart Fail. Rep. 2023, 20, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; D’Amato, A.; Prosperi, S.; Myftari, V.; Canuti, E.S.; Labbro Francia, A.; Cestiè, C.; Maestrini, V.; Lavalle, C.; Badagliacca, R.; et al. Heart Failure Pharmacological Management: Gaps and Current Perspectives. J. Clin. Med. 2023, 12, 1020. [Google Scholar] [CrossRef] [PubMed]
- Severino, P.; D’Amato, A.; Prosperi, S.; Dei Cas, A.; Mattioli, A.V.; Cevese, A.; Novo, G.; Prat, M.; Pedrinelli, R.; Raddino, R.; et al. Do the Current Guidelines for Heart Failure Diagnosis and Treatment Fit with Clinical Complexity? J. Clin. Med. 2022, 11, 857. [Google Scholar] [CrossRef] [PubMed]
- Adamo, M.; Pagnesi, M.; Mebazaa, A.; Davison, B.; Edwards, C.; Tomasoni, D.; Arrigo, M.; Barros, M.; Biegus, J.; Celutkiene, J.; et al. NT-proBNP and high intensity care for acute heart failure: The STRONG-HF trial. Eur. Heart J. 2023, 44, 2947–2962. [Google Scholar] [CrossRef]
- Severino, P.; Mancone, M.; D’Amato, A.; Mariani, M.V.; Prosperi, S.; Alunni Fegatelli, D.; Birtolo, L.I.; Angotti, D.; Milanese, A.; Cerrato, E.; et al. Heart failure ‘the cancer of the heart’: The prognostic role of the HLM score. ESC Heart Fail. 2024, 11, 390–399. [Google Scholar] [CrossRef]
Variable | Total Population (N = 253) |
---|---|
Age, years (IQR) | 73 (64.5–80) |
Male sex, n (%) | 177 (70) |
Arterial hypertension, n (%) | 195 (77.1) |
Diabetes mellitus, n (%) | 72 (28.5) |
Dyslipidemia, n (%) | 133 (52.6) |
Family history of CVD, n (%) | 66 (26.1) |
COPD, n (%) | 67 (26.5) |
Smoking habit, n (%) | 96 (37.9) |
Ischemic, n (%) | 138 (54.5) |
Hypertensive, n (%) | 35 (13.8) |
Idiopathic, n (%) | 29 (11.5) |
Valvular, n (%) | 29 (11.5) |
Inflammatory/drug induced, n (%) | 22 (8.7) |
Acute presentation, n (%) | 146 (57.7) |
Chronic presentation, n (%) | 107 (42.3) |
eGFR, mL/min/m2 (IQR) | 64 (46–81.7) |
Hemoglobin, g/dL (IQR) | 12.9 (10.9–14.3) |
K+, mmol/L (IQR) | 4 (3.68–4.33) |
Admission hs-cTnT, ng/mL (IQR) | 0.031 (0.02–0.078) |
Discharge hs-cTnT, ng/mL (IQR) | 0.031 (0.02–0.077) |
hs-cTnT peak, ng/mL (IQR) | 0.042 (0.023–0.121) |
hs-cTnT delta peak-admission, ng/mL (IQR) | 0.001 (0–0.026) |
HFrEF, n (%) | 199 (78.7) |
HFmrEF/HFpEF, n (%) | 54 (21.3) |
LVEF, % (IQR) | 32 (25–40) |
LVEDD, mm (IQR) | 58 (52–64) |
IVS, mm (IQR) | 11 (9–12) |
PW, mm (IQR) | 10 (9–10.5) |
Basal RVEDD, mm (IQR) | 36 (31–44) |
TAPSE, mm (IQR) | 18 (15–20) |
Median NYHA, class (IQR) | 3 (2–3) |
Variable | hs-cTnT below Median Value | hs-cTnT above Median Value | p Value |
---|---|---|---|
CV death/HFH, n (%) | 13 (9.5) | 23 (19.8) | 0.02 |
CV death, n (%) | 8 (5.8) | 15 (12.9) | 0.05 |
HFH, n (%) | 9 (6.6) | 11 (9.5) | 0.4 |
Urgent visit/loop diuretic escalation, n (%) | 21 (15.3) | 20 (17.2) | 0.68 |
Variable | No hs-cTnT Increase | hs-cTnT Increase | p Value |
---|---|---|---|
CV death/HFH, n (%) | 16 (10.5) | 20 (20) | 0.03 |
CV death, n (%) | 10 (6.5) | 13 (13) | 0.08 |
HFH, n (%) | 11 (7.2) | 9 (9) | 0.6 |
Urgent visit/loop diuretic escalation, n (%) | 28 (18.3) | 13 (13) | 0.26 |
Univariate | |||
---|---|---|---|
Variable | OR | 95% CI | p Value |
hs-cTnT above median | 2.2 | 1.117–4.353 | 0.02 |
Age | 1.01 | 0.986–1.044 | 0.33 |
Male sex | 0.75 | 0.380–1.479 | 0.40 |
ACS | 1.12 | 0.489–2.550 | 0.79 |
Arterial hypertension | 0.65 | 0.322–1.328 | 0.24 |
Diabetes mellitus | 1.64 | 0.838–3.201 | 0.15 |
eGFR | 0.99 | 0.994–1.004 | 0.78 |
LVEF | 0.99 | 0.950–1.012 | 0.21 |
Hemoglobin | 0.88 | 0.768–1.015 | 0.08 |
Multivariate | |||
Variable | OR | 95% CI | p value |
hs-cTnT above median | 2.06 | 1.025–4.128 | 0.04 |
Hemoglobin | 0.94 | 0.815–1.090 | 0.42 |
Univariate | |||
---|---|---|---|
Variable | OR | 95% CI | p Value |
hs-cTnT increase | 2.02 | 1.05–3.908 | 0.035 |
Age | 1.01 | 0.968–10.44 | 0.33 |
Male sex | 0.75 | 0.380–1.479 | 0.40 |
ACS | 1.12 | 0.489–2.550 | 0.79 |
Arterial hypertension | 0.65 | 0.322–1.328 | 0.24 |
Diabetes mellitus | 1.64 | 0.838–3.201 | 0.15 |
eGFR | 0.99 | 0.994–1.004 | 0.78 |
LVEF | 0.98 | 0.950–1.012 | 0.21 |
Hemoglobin | 0.88 | 0.768–1.015 | 0.08 |
Multivariate | |||
Variable | OR | 95% CI | p value |
hs-cTnT increase | 1.95 | 1.006–3.769 | 0.04 |
Hemoglobin | 0.92 | 0.803–1.061 | 0.26 |
Variable | hs-cTnT below Median Value | hs-cTnT above Median Value | p Value |
---|---|---|---|
CV death/HFH, n (%) | 2 (3.3) | 7 (14.9) | 0.04 |
CV death, n (%) | 1 (1.7) | 4 (8.5) | 0.17 |
HFH, n (%) | 1 (1.7) | 5 (10.6) | 0.08 |
Urgent visit/loop diuretic escalation, n (%) | 8 (13.3) | 12 (25.5) | 0.1 |
Variable | HFrEF (N = 199) | HFmrEF/HFpEF (N = 54) | p Value |
---|---|---|---|
Age, years (IQR) | 72 (64–80) | 76 (68–81) | 0.081 |
Male sex, n (%) | 147 (73.9) | 30 (55.6) | 0.009 |
Ischemic etiology, n (%) | 113 (56.8) | 25 (46.3) | 0.21 |
Arterial hypertension, n (%) | 156 (78.4) | 39 (72.2) | 0.339 |
Diabetes mellitus, n (%) | 59 (29.6) | 13 (24.1) | 0.421 |
Dyslipidemia, n (%) | 104 (52.3) | 29 (53.7) | 0.851 |
Family history of CVD, n (%) | 52 (26.1) | 14 (25.9) | 0.976 |
COPD, n (%) | 51 (25.6) | 16 (29.6) | 0.554 |
Smoking habit, n (%) | 75 (37.7) | 21 (38.9) | 0.872 |
Acute presentation, n (%) | 120 (60.3) | 26 (48.1) | 0.024 |
Chronic presentation, n (%) | 79 (39.7) | 28 (51.9) | 0.024 |
eGFR, mL/min/m2 (IQR) | 63 (44–80) | 66.3 (50–84.3) | 0.62 |
Hemoglobin, g/dL (IQR) | 13 (10.9–14.3) | 12.5 (11.2–14.2) | 0.46 |
K+, mmol/L (IQR) | 4 (3.7–4.3) | 4 (3.4–4.4) | 0.55 |
Admission hs-cTnT, ng/mL (IQR) | 0.031 (0.020–0.089) | 0.031 (0.019–0.067) | 0.817 |
Discharge hs-cTnT, ng/mL (IQR) | 0.030 (0.020–0.074) | 0.04 (0.02–0.079) | 0.139 |
hs-cTnT peak, ng/mL (IQR) | 0.04 (0.024–0.118) | 0.044 (0.022–0.183) | 0.852 |
hs-cTnT delta peak-admission, ng/mL (IQR) | 0.001 (0–0.024) | 0.003 (0–0.048) | 0.375 |
LVEF, % (IQR) | 30 (21–35) | 45 (45–50) | <0.001 |
LVEDD, mm (IQR) | 60 (54–65) | 50.5 (45–56) | <0.001 |
IVS, mm (IQR) | 11 (9–12) | 11 (10–12.3) | 0.077 |
PW, mm (IQR) | 10 (9–11) | 10 (9–10) | 0.737 |
Basal RVEDD, mm (IQR) | 34 (29–41) | 38 (33–44) | 0.1 |
TAPSE, mm (IQR) | 18 (14–20) | 19 (17–20) | 0.029 |
ACEi, n (%) | 17 (8.5) | 17 (31.5) | <0.001 |
ARBs, n (%) | 14 (7) | 4 (7.4) | 1 |
ARNI, n (%) | 137 (68.8) | 15 (27.8) | <0.001 |
BB, n (%) | 189 (95) | 53 (98.1) | 0.466 |
MRAs, n (%) | 165 (82.9) | 29 (53.7) | <0.001 |
SGLT2i, n (%) | 108 (54.3) | 17 (31.5) | 0.009 |
Loop diuretics, n (%) | 153 (76.9) | 31 (57.4) | 0.004 |
Median NYHA, class (IQR) | 3 (2–3) | 3 (2–3) | 1 |
Variable | hs-cTnT below Median Value | hs-cTnT above Median Value | p Value |
---|---|---|---|
CV death/HFH, n (%) | 2 (6.7) | 6 (25) | 0.12 |
CV death, n (%) | 1 (3.3) | 3 (12.5) | 0.31 |
HFH, n (%) | 1 (3.3) | 4 (16.7) | 0.16 |
Urgent visit/loop diuretic escalation, n (%) | 3 (10) | 8 (33.3) | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amato, A.; Severino, P.; Prosperi, S.; Mariani, M.V.; Germanò, R.; De Prisco, A.; Myftari, V.; Cestiè, C.; Labbro Francia, A.; Marek-Iannucci, S.; et al. The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum. J. Clin. Med. 2024, 13, 3533. https://doi.org/10.3390/jcm13123533
D’Amato A, Severino P, Prosperi S, Mariani MV, Germanò R, De Prisco A, Myftari V, Cestiè C, Labbro Francia A, Marek-Iannucci S, et al. The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum. Journal of Clinical Medicine. 2024; 13(12):3533. https://doi.org/10.3390/jcm13123533
Chicago/Turabian StyleD’Amato, Andrea, Paolo Severino, Silvia Prosperi, Marco Valerio Mariani, Rosanna Germanò, Andrea De Prisco, Vincenzo Myftari, Claudia Cestiè, Aurora Labbro Francia, Stefanie Marek-Iannucci, and et al. 2024. "The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum" Journal of Clinical Medicine 13, no. 12: 3533. https://doi.org/10.3390/jcm13123533
APA StyleD’Amato, A., Severino, P., Prosperi, S., Mariani, M. V., Germanò, R., De Prisco, A., Myftari, V., Cestiè, C., Labbro Francia, A., Marek-Iannucci, S., Tabacco, L., Vari, L., Marano, S. L., Di Pietro, G., Lavalle, C., Sardella, G., Mancone, M., Badagliacca, R., Fedele, F., & Vizza, C. D. (2024). The Role of High-Sensitivity Troponin T Regarding Prognosis and Cardiovascular Outcome across Heart Failure Spectrum. Journal of Clinical Medicine, 13(12), 3533. https://doi.org/10.3390/jcm13123533