Implications of Vascularized Composite Allotransplantation in Plastic Surgery on Legal Medicine
Abstract
:1. Introduction
2. Biological Sample Analysis and Artificial Chimerism in VCA
- (i)
- Naturally, any allogeneic transplantation involves the transfer of foreign, non-autologous tissue. In VCA, the transplanted units comprise a heterogenous set of tissues including skin, bone, muscle, hair, and vasculature (Figure 1). Accordingly, as part of VCA surgery, patients receive the donor’s biological and miscellaneous material. Therefore, postoperatively, VCA patients carry tissue from two separate identities. In addition, transplant patients may also receive facial or scalp hair from donors during VCA surgery. Microscopic hair analysis is not very accurate to begin with and can lead to false results given the intrapersonal variations between scalp, pubic, scrotal, and labial hair [4]. Briefly, depending on the origin of the analyzed sample and tissue from VCA recipients, forensic identification may yield different (and false) results;
- (ii)
- Previous studies demonstrated that allogeneic hematopoietic stem cell transplantation can result in the coexistence of donor cells and host cells with different genomes (i.e., chimerism) [14,15]. Such stem cells are typically isolated from bone marrow [16]. The component of a vascularized bone marrow compartment (often the radius, ulna, or jaw are included) is unique to VCA. Accordingly, there is a mounting body of evidence pointing toward the development of chimerism as a passenger within VCA surgery. In animal VCA models, macrochimerism has been well documented [17,18,19,20]. Yet, clinically, the correlation between VCA and chimerism remains to be fully elucidated. While Granger et al. and Kanitakis et al. were able to observe microchimerism in human hand allografts, Schultz et al. detected both donor and host DNA in samples of human full-facial transplants [21,22]. Notably, in all three cases, the microchimerism was found to be of transient nature, with all donor cells vanishing within the first postoperative year. Given the extremely low levels of donor-derived cells/DNA in the host organism, (micro)chimerism analysis in human VCA necessitates highly discriminative and efficient techniques. Further long-term studies are needed to thoroughly investigate the development and frequency of (stable) chimerism in clinical VCA.
3. Facial Recognition and Anthropomorphic Studies
4. Fingerprint Analysis
5. Forensic Odontology
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panayi, A.C.; Endo, Y.; Huidobro, A.F.; Haug, V.; Panayi, A.M.; Orgill, D.P. Lights, camera, scalpel: A lookback at 100 years of plastic surgery on the silver screen. Eur. J. Plast. Surg. 2021, 44, 551–561. [Google Scholar] [CrossRef]
- Sanz-Piña, E.; Santurtún, A.; Zarrabeitia, M.T. Forensic implications of the presence of chimerism after hematopoietic stem cell transplantation. Forensic Sci. Int. 2019, 302, 109862. [Google Scholar] [CrossRef] [PubMed]
- Bond, J.W.; Hammond, C. The value of DNA material recovered from crime scenes. J. Forensic Sci. 2008, 53, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Linch, C.A.; Whiting, D.A.; Holland, M.M. Human Hair Histogenesis for the Mitochondrial DNA Forensic Scientist. J. Forensic Sci. 2001, 46, 15056J. [Google Scholar] [CrossRef] [Green Version]
- Oz, C.; Zamir, A. An Evaluation of the Relevance of Routine DNA Typing of Fingernail Clippings for Forensic Casework. J. Forensic Sci. 2000, 45, 14651J. [Google Scholar] [CrossRef]
- Higgins, D.; Austin, J.J. Teeth as a source of DNA for forensic identification of human remains: A Review. Sci. Justice 2013, 53, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Park, J.L.; Kwon, O.H.; Kim, J.H.; Yoo, H.S.; Lee, H.C.; Woo, K.M.; Kim, S.Y.; Lee, S.H.; Kim, Y.S. Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci. Int. Genet. 2014, 13, 147–153. [Google Scholar] [CrossRef]
- Virkler, K.; Lednev, I.K. Forensic body fluid identification: The Raman spectroscopic signature of saliva. Analyst 2010, 135, 512–517. [Google Scholar] [CrossRef]
- Courts, C.; Madea, B. Specific micro-RNA signatures for the detection of saliva and blood in forensic body-fluid identification. J. Forensic Sci. 2011, 56, 1464–1470. [Google Scholar] [CrossRef]
- Zubakov, D.; Kokshoorn, M.; Kloosterman, A.; Kayser, M. New markers for old stains: Stable mRNA markers for blood and saliva identification from up to 16-year-old stains. Int. J. Legal Med. 2009, 123, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Kayser, M.; Schneider, P.M. DNA-based prediction of human externally visible characteristics in forensics: Motivations, scientific challenges, and ethical considerations. Forensic Sci. Int. Genet. 2009, 3, 154–161. [Google Scholar] [CrossRef]
- Budowle, B.; Allard, M.W.; Wilson, M.R.; Chakraborty, R. Forensics and mitochondrial DNA: Applications, debates, and foundations. Annu. Rev. Genomics. Hum. Genet. 2003, 4, 119–141. [Google Scholar] [CrossRef] [Green Version]
- Saks, M.J.; Koehler, J.J. The coming paradigm shift in forensic identification science. Science 2005, 309, 892–895. [Google Scholar] [CrossRef] [Green Version]
- Tozzo, P.; Delicati, A.; Zambello, R.; Caenazzo, L. Chimerism Monitoring Techniques after Hematopoietic Stem Cell Transplantation: An Overview of the Last 15 Years of Innovations. Diagnostics 2021, 11, 621. [Google Scholar] [CrossRef]
- Zimmerman, C.; Shenoy, S. Chimerism in the Realm of Hematopoietic Stem Cell Transplantation for Non-malignant Disorders—A Perspective. Front. Immunol. 2020, 11, 1791. [Google Scholar] [CrossRef]
- Yang, J.-D.; Cheng, H.; Wang, J.-C.; Feng, X.-M.; Li, Y.-N.; Xiao, H.-X. The isolation and cultivation of bone marrow stem cells and evaluation of differences for neural-like cells differentiation under the induction with neurotrophic factors. Cytotechnology 2014, 66, 1007–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, R.N.; Rodriguez, E.D.; Mundinger, G.S.; Nam, A.J.; Ha, J.S.; Hui-Chou, H.; Jones, L.S.; Panda, A.; Shipley, S.T.; Drachenberg, C.B.; et al. Vascularized Bone Marrow-Based Immunosuppression Inhibits Rejection of Vascularized Composite Allografts in Nonhuman Primates. Am. J. Transplant. 2011, 11, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Leto Barone, A.A.; Kurtz, J.M.; Albritton, A.; Mallard, C.A.; Shanmugarajah, K.; Torabi, R.; Leonard, D.A.; Randolph, M.A.; Huang, C.A.; Sachs, D.H.; et al. Effects of Transient Donor Chimerism on Rejection of MHC-Mismatched Vascularized Composite Allografts in Swine. Vasc. Compos. Allotransplant. 2015, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-H.; Anggelia, M.R.; Cheng, H.-Y.; Wang, A.Y.L.; Chuang, W.-Y.; Lin, C.-H.; Lee, W.P.A.; Wei, F.-C.; Brandacher, G. The intragraft vascularized bone marrow component plays a critical role in tolerance induction after reconstructive transplantation. Cell. Mol. Immunol. 2021, 18, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Klimczak, A.; Unal, S.; Agaoglu, G.; Carnevale, K.; Siemionow, M. Maintenance of Donor-Specific Chimerism Despite Osteopontin-Associated Bone Fibrosis in a Vascularized Bone Marrow Transplantation Model. Plast. Reconstr. Surg. 2009, 123, 34S–44S. [Google Scholar] [CrossRef]
- Granger, D.K.; Briedenbach, W.C.; Pidwell, D.J.; Jones, J.W.; Baxter-Lowe, L.A.; Kaufman, C.L. Lack of donor hyporesponsiveness and donor chimerism after clinical transplantation of the hand1. Transplantation 2002, 74, 1624–1630. [Google Scholar] [CrossRef] [PubMed]
- Kanitakis, J.; Jullien, D.; Claudy, A.; Revillard, J.; Dubernard, J. Microchimerism in a human hand allograft. Lancet 1999, 354, 1820–1821. [Google Scholar] [CrossRef] [PubMed]
- Santurtún, A.; Riancho, J.A.; Santurtún, M.; Richard, C.; Colorado, M.M.; García Unzueta, M.; Zarrabeitia, M.T. Genetic DNA profile in urine and hair follicles from patients who have undergone allogeneic hematopoietic stem cell transplantation. Sci. Justice 2017, 57, 336–340. [Google Scholar] [CrossRef]
- Li, Y.; Xie, M.; Wu, J. DNA profiling in peripheral blood, buccal swabs, hair follicles and semen from a patient following allogeneic hematopoietic stem cells transplantation. Biomed. Rep. 2014, 2, 804–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tome, P.; Vera-Rodriguez, R.; Fierrez, J.; Ortega-Garcia, J. Facial soft biometric features for forensic face recognition. Forensic Sci. Int. 2015, 257, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Turner, W.D.; Brown, R.E.B.; Kelliher, T.P.; Tu, P.H.; Taister, M.A.; Miller, K.W.P. A novel method of automated skull registration for forensic facial approximation. Forensic Sci. Int. 2005, 154, 149–158. [Google Scholar] [CrossRef]
- Graham, E.A.M. Pathological findings of a fatal leopard seal attack. Forensic Sci. Med. Pathol. 2006, 2, 203–207. [Google Scholar] [CrossRef]
- Lin, W.S.; Tjoa, S.K.; Zhao, H.V.; Liu, K.J.R. Digital image source coder forensics via intrinsic fingerprints. IEEE Trans. Inf. Forensics. Secur. 2009, 4, 460–475. [Google Scholar] [CrossRef] [Green Version]
- Satariano, A. Police Use of Facial Recognition Is Legal, Cardiff High Court Rules; The Guardian: London, UK, 2019; Available online: https://www.theguardian.com/technology/2019/sep/04/police-use-of-facial-recognition-is-legal-cardiff-high-court-rules (accessed on 29 January 2023).
- Ali, T.; Spreeuwers, L.; Veldhuis, R. Forensic face recognition: A survey. In Face Recognition: Methods Applications and Technology; Quaglia, A., Epifano, C.M., Eds.; Nova Science Publishers: New York, NY, USA, 2012. [Google Scholar]
- Lynch, J. From Fingerprints to DNA: Biometric Data Collection in U.S. Immigrant Communities and Beyond. SSRN Electron. J. 2012. [Google Scholar] [CrossRef]
- Cattaneo, C. Forensic anthropology: Developments of a classical discipline in the new millennium. Forensic Sci. Int. 2007, 165, 185–193. [Google Scholar] [CrossRef]
- Stephan, C.N. Do Resemblance Ratings Measure the Accuracy of Facial Approximations? J. Forensic Sci. 2002, 47, 15239J. [Google Scholar] [CrossRef]
- Jain, A.K.; Klare, B.; Park, U. Face recognition: Some challenges in forensics. In Proceedings of the 2011 IEEE International Conference on Automatic Face and Gesture Recognition and Workshops, FG 2011, Santa Barbara, CA, USA, 21–25 March 2011. [Google Scholar] [CrossRef] [Green Version]
- Law Journal Editorial Board. In Favor of Access to Facial Recognition Technology for Law Enforcement. 2020. Available online: https://www.law.com/njlawjournal/2020/04/26/in-favor-of-access-to-facial-recognition-technology-for-law-enforcement/?slreturn=20230215083119 (accessed on 29 January 2023).
- Murthy, C.R.V.; Nagashekhara, M.; Chyn, L.T.; Samuel, V.P.; Kademane, K.; Gubbiyappa, K.S.; Pushpa, B.S. Ethical, Social and Legal Intricacies on Facial Transplant. Anthropologist 2016, 25, 117–121. [Google Scholar] [CrossRef]
- Dorante, M.I.; Kollar, B.; Obed, D.; Haug, V.; Fischer, S.; Pomahac, B. Recognizing Emotional Expression as an Outcome Measure After Face Transplant. JAMA Netw. Open 2020, 3, e1919247. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Jain, A.K. Longitudinal study of fingerprint recognition. Proc. Natl. Acad. Sci. USA 2015, 112, 8555–8560. [Google Scholar] [CrossRef] [Green Version]
- Jackson, K. Challenging facial recognition software in criminal court. Champion 2019, 14–26. Available online: https://www.nacdl.org/Article/July2019-ChallengingFacialRecognitionSoftwareinCri (accessed on 29 January 2023).
- Huynh, C.; Brunelle, E.; Halámková, L.; Agudelo, J.; Halámek, J. Forensic Identification of Gender from Fingerprints. Anal. Chem. 2015, 87, 11531–11536. [Google Scholar] [CrossRef]
- Dror, I.E.; Mnookin, J.L. The use of technology in human expert domains: Challenges and risks arising from the use of automated fingerprint identification systems in forensic science. Law Probab. Risk 2010, 9, 47–67. [Google Scholar] [CrossRef]
- Mil’shtein, S.; Doshi, U. Scanning the pressure-induced distortion of fingerprints. Scanning 2004, 26, 270–272. [Google Scholar] [CrossRef]
- Szajerka, T.; Jurek, B.; Jablecki, J. Transplanted Fingerprints: A Preliminary Case Report 40 Months Posttransplant. Transplant. Proc. 2010, 42, 3753–3755. [Google Scholar] [CrossRef]
- Menna, G.; Scarpis, P. Living with Two Different Fingerprints: Legal Implications and Identification Issues. In Hand Transplantation; Lanzetta, M., Dubernard, J.-M., Petruzzo, P., Eds.; Springer: Milan, Italy, 2007. [Google Scholar] [CrossRef]
- BBC NEWS. “Fake Fingerprint” Chinese Woman Fools Japan Controls. Available online: http://news.bbc.co.uk/1/hi/world/asia-pacific/8400222.stm (accessed on 29 January 2023).
- White, T. Plastic Surgery Used to Change Fingerprints. Stanford Medicine. 7 December 2009. Available online: https://scopeblog.stanford.edu/2009/12/07/plastic_surgery/ (accessed on 29 January 2023).
- Mohammed, F.; Fairozekhan, A.T.; Bhat, S.; Menezes, R.G. Forensic Odontology. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://pubmed.ncbi.nlm.nih.gov/31082028/ (accessed on 29 January 2023).
- Ata-Ali, J.; Ata-Ali, F. Forensic dentistry in human identification: A review of the literature. J. Clin. Exp. Dent. 2014, 6, e162–e167. [Google Scholar] [CrossRef]
- Matsuda, S.; Yoshida, H.; Ebata, K.; Shimada, I.; Yoshimura, H. Forensic odontology with digital technologies: A systematic review. J. Forensic Leg. Med. 2020, 74, 102004. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Bi, R.; Chen, H.; Zhu, S.; Jiang, N. Motivations and Concerns of Preorthognathic Surgery Patients. J. Craniofac Surg. 2022, 33, e719–e722. [Google Scholar] [CrossRef]
- Wall, A.; Bueno, E.; Pomahac, B.; Treister, N. Intraoral features and considerations in face transplantation. Oral. Dis. 2016, 22, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Norrman, A.; Nylund, K.; Ruokonen, H.; Mauno, J.; Mesimäki, K.; Haapaniemi, A.; Lassus, P.; Helenius-Hietala, J. Oral findings and treatment of patients with face transplants in Helsinki. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2021, 132, 44–51. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haug, V.; Panayi, A.C.; Knoedler, S.; Foroutanjazi, S.; Kauke-Navarro, M.; Fischer, S.; Hundeshagen, G.; Diehm, Y.; Kneser, U.; Pomahac, B. Implications of Vascularized Composite Allotransplantation in Plastic Surgery on Legal Medicine. J. Clin. Med. 2023, 12, 2308. https://doi.org/10.3390/jcm12062308
Haug V, Panayi AC, Knoedler S, Foroutanjazi S, Kauke-Navarro M, Fischer S, Hundeshagen G, Diehm Y, Kneser U, Pomahac B. Implications of Vascularized Composite Allotransplantation in Plastic Surgery on Legal Medicine. Journal of Clinical Medicine. 2023; 12(6):2308. https://doi.org/10.3390/jcm12062308
Chicago/Turabian StyleHaug, Valentin, Adriana C. Panayi, Samuel Knoedler, Sina Foroutanjazi, Martin Kauke-Navarro, Sebastian Fischer, Gabriel Hundeshagen, Yannick Diehm, Ulrich Kneser, and Bohdan Pomahac. 2023. "Implications of Vascularized Composite Allotransplantation in Plastic Surgery on Legal Medicine" Journal of Clinical Medicine 12, no. 6: 2308. https://doi.org/10.3390/jcm12062308
APA StyleHaug, V., Panayi, A. C., Knoedler, S., Foroutanjazi, S., Kauke-Navarro, M., Fischer, S., Hundeshagen, G., Diehm, Y., Kneser, U., & Pomahac, B. (2023). Implications of Vascularized Composite Allotransplantation in Plastic Surgery on Legal Medicine. Journal of Clinical Medicine, 12(6), 2308. https://doi.org/10.3390/jcm12062308