CAR T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. CD19-Targeting CAR T-Cells
2.1. Tisagenlecleucel
2.2. Brexucabtagene Autoleucel (KTE-X19)
3. Real-Life Experience
4. CD19-Targeting CAR T-Cell and Extra-Medullary Disease
5. Toxicity of CAR T-Cells
6. Mechanisms of Relapse following Anti-CD19 CAR T-Cells
6.1. CD19-Positive Relapse
6.2. CD19-Negative Relapse
6.3. Role of Previous Blinatumomab
7. Overcoming Resistance to CD19-Targeting CAR T-Cells
7.1. CD22 CAR T-Cell Therapy
7.2. Bispecific CD19 and CD22 CAR T-Cells
7.3. Sequential Infusion of CAR T-Cells
7.4. Coadministration of CD19- and CD22-Targeting CAR T-Cell
7.5. Allogenic CAR T-Cell Therapy
7.6. Role of Bridging Therapy and Lymphodepletion Regimens
7.7. Consolidative Allogenic Stem Cell Transplantation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and Adolescent Cancer Statistics, 2014. CA Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Hoelzer, D.; Bassan, R.; Dombret, H.; Fielding, A.; Ribera, J.M.; Buske, C. ESMO Guidelines Committee Acute Lymphoblastic Leukaemia in Adult Patients: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2016, 27, v69–v82. [Google Scholar] [CrossRef] [PubMed]
- Hunger, S.P.; Lu, X.; Devidas, M.; Camitta, B.M.; Gaynon, P.S.; Winick, N.J.; Reaman, G.H.; Carroll, W.L. Improved Survival for Children and Adolescents with Acute Lymphoblastic Leukemia between 1990 and 2005: A Report from the Children’s Oncology Group. J. Clin. Oncol. 2012, 30, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- Larsen, E.C.; Devidas, M.; Chen, S.; Salzer, W.L.; Raetz, E.A.; Loh, M.L.; Mattano, L.A.; Cole, C.; Eicher, A.; Haugan, M.; et al. Dexamethasone and High-Dose Methotrexate Improve Outcome for Children and Young Adults with High-Risk B-Acute Lymphoblastic Leukemia: A Report from Children’s Oncology Group Study AALL0232. J. Clin. Oncol. 2016, 34, 2380–2388. [Google Scholar] [CrossRef] [PubMed]
- Oudot, C.; Auclerc, M.-F.; Levy, V.; Porcher, R.; Piguet, C.; Perel, Y.; Gandemer, V.; Debre, M.; Vermylen, C.; Pautard, B.; et al. Prognostic Factors for Leukemic Induction Failure in Children with Acute Lymphoblastic Leukemia and Outcome after Salvage Therapy: The FRALLE 93 Study. J. Clin. Oncol. 2008, 26, 1496–1503. [Google Scholar] [CrossRef] [PubMed]
- Möricke, A.; Zimmermann, M.; Reiter, A.; Henze, G.; Schrauder, A.; Gadner, H.; Ludwig, W.D.; Ritter, J.; Harbott, J.; Mann, G.; et al. Long-Term Results of Five Consecutive Trials in Childhood Acute Lymphoblastic Leukemia Performed by the ALL-BFM Study Group from 1981 to 2000. Leukemia 2010, 24, 265–284. [Google Scholar] [CrossRef] [PubMed]
- Schmiegelow, K.; Forestier, E.; Hellebostad, M.; Heyman, M.; Kristinsson, J.; Söderhäll, S.; Taskinen, M. Nordic Society of Paediatric Haematology and Oncology Long-Term Results of NOPHO ALL-92 and ALL-2000 Studies of Childhood Acute Lymphoblastic Leukemia. Leukemia 2010, 24, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Stock, W.; Luger, S.M.; Advani, A.S.; Yin, J.; Harvey, R.C.; Mullighan, C.G.; Willman, C.L.; Fulton, N.; Laumann, K.M.; Malnassy, G.; et al. A Pediatric Regimen for Older Adolescents and Young Adults with Acute Lymphoblastic Leukemia: Results of CALGB 10403. Blood 2019, 133, 1548–1559. [Google Scholar] [CrossRef]
- Saini, N.; Marin, D.; Ledesma, C.; Delgado, R.; Rondon, G.; Popat, U.R.; Bashir, Q.; Hosing, C.M.; Nieto, Y.; Alousi, A.M.; et al. Impact of TKIs Post-Allogeneic Hematopoietic Cell Transplantation in Philadelphia Chromosome-Positive ALL. Blood 2020, 136, 1786–1789. [Google Scholar] [CrossRef]
- Malard, F.; Mohty, M. Acute Lymphoblastic Leukaemia. Lancet 2020, 395, 1146–1162. [Google Scholar] [CrossRef]
- Paul, S.; Rausch, C.R.; Nasnas, P.E.; Kantarjian, H.; Jabbour, E.J. Treatment of Relapsed/Refractory Acute Lymphoblastic Leukemia. Clin. Adv. Hematol. Oncol. 2019, 17, 166–175. [Google Scholar] [PubMed]
- Duval, M.; Klein, J.P.; He, W.; Cahn, J.-Y.; Cairo, M.; Camitta, B.M.; Kamble, R.; Copelan, E.; de Lima, M.; Gupta, V.; et al. Hematopoietic Stem-Cell Transplantation for Acute Leukemia in Relapse or Primary Induction Failure. J. Clin. Oncol. 2010, 28, 3730–3738. [Google Scholar] [CrossRef] [PubMed]
- Ko, R.H.; Ji, L.; Barnette, P.; Bostrom, B.; Hutchinson, R.; Raetz, E.; Seibel, N.L.; Twist, C.J.; Eckroth, E.; Sposto, R.; et al. Outcome of Patients Treated for Relapsed or Refractory Acute Lymphoblastic Leukemia: A Therapeutic Advances in Childhood Leukemia Consortium Study. J. Clin. Oncol. 2010, 28, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Malvar, J.; Sposto, R.; Verma, A.; Wilkes, J.J.; Dennis, R.; Heym, K.; Laetsch, T.W.; Widener, M.; Rheingold, S.R.; et al. Outcome of Children with Multiply Relapsed B-Cell Acute Lymphoblastic Leukemia: A Therapeutic Advances in Childhood Leukemia & Lymphoma Study. Leukemia 2018, 32, 2316–2325. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.M.; DeAngelo, D.J.; Stelljes, M.; Martinelli, G.; Liedtke, M.; Stock, W.; Gökbuget, N.; O’Brien, S.; Wang, K.; Wang, T.; et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2016, 375, 740–753. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.-M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.A.; O’Brien, S.; Faderl, S.; Garcia-Manero, G.; Ferrajoli, A.; Wierda, W.; Ravandi, F.; Verstovsek, S.; Jorgensen, J.L.; Bueso-Ramos, C.; et al. Chemoimmunotherapy with a Modified Hyper-CVAD and Rituximab Regimen Improves Outcome in de Novo Philadelphia Chromosome-Negative Precursor B-Lineage Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2010, 28, 3880–3889. [Google Scholar] [CrossRef]
- Gökbuget, N.; Dombret, H.; Bonifacio, M.; Reichle, A.; Graux, C.; Faul, C.; Diedrich, H.; Topp, M.S.; Brüggemann, M.; Horst, H.-A.; et al. Blinatumomab for Minimal Residual Disease in Adults with B-Cell Precursor Acute Lymphoblastic Leukemia. Blood 2018, 131, 1522–1531. [Google Scholar] [CrossRef]
- Maude, S.L.; Laetsch, T.W.; Buechner, J.; Rives, S.; Boyer, M.; Bittencourt, H.; Bader, P.; Verneris, M.R.; Stefanski, H.E.; Myers, G.D.; et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 439–448. [Google Scholar] [CrossRef]
- Shah, B.D.; Ghobadi, A.; Oluwole, O.O.; Logan, A.C.; Boissel, N.; Cassaday, R.D.; Leguay, T.; Bishop, M.R.; Topp, M.S.; Tzachanis, D.; et al. KTE-X19 for Relapsed or Refractory Adult B-Cell Acute Lymphoblastic Leukaemia: Phase 2 Results of the Single-Arm, Open-Label, Multicentre ZUMA-3 Study. Lancet 2021, 398, 491–502. [Google Scholar] [CrossRef]
- Gardner, R.A.; Finney, O.; Annesley, C.; Brakke, H.; Summers, C.; Leger, K.; Bleakley, M.; Brown, C.; Mgebroff, S.; Kelly-Spratt, K.S.; et al. Intent-to-Treat Leukemia Remission by CD19 CAR T Cells of Defined Formulation and Dose in Children and Young Adults. Blood 2017, 129, 3322–3331. [Google Scholar] [CrossRef]
- Shah, N.N.; Fry, T.J. Mechanisms of Resistance to CAR T Cell Therapy. Nat. Rev. Clin. Oncol. 2019, 16, 372–385. [Google Scholar] [CrossRef] [PubMed]
- Orlando, E.J.; Han, X.; Tribouley, C.; Wood, P.A.; Leary, R.J.; Riester, M.; Levine, J.E.; Qayed, M.; Grupp, S.A.; Boyer, M.; et al. Genetic Mechanisms of Target Antigen Loss in CAR19 Therapy of Acute Lymphoblastic Leukemia. Nat. Med. 2018, 24, 1504–1506. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Kochenderfer, J.N.; Stetler-Stevenson, M.; Cui, Y.K.; Delbrook, C.; Feldman, S.A.; Fry, T.J.; Orentas, R.; Sabatino, M.; Shah, N.N.; et al. T Cells Expressing CD19 Chimeric Antigen Receptors for Acute Lymphoblastic Leukaemia in Children and Young Adults: A Phase 1 Dose-Escalation Trial. Lancet 2015, 385, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Rivière, I.; Gonen, M.; Wang, X.; Sénéchal, B.; Curran, K.J.; Sauter, C.; Wang, Y.; Santomasso, B.; Mead, E.; et al. Long-Term Follow-up of CD19 CAR Therapy in Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2018, 378, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Lee, D.W.; Yates, B.; Yuan, C.M.; Shalabi, H.; Martin, S.; Wolters, P.L.; Steinberg, S.M.; Baker, E.H.; Delbrook, C.P.; et al. Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults with B-ALL. J. Clin. Oncol. 2021, 39, 1650–1659. [Google Scholar] [CrossRef] [PubMed]
- Hay, K.A.; Gauthier, J.; Hirayama, A.V.; Voutsinas, J.M.; Wu, Q.; Li, D.; Gooley, T.A.; Cherian, S.; Chen, X.; Pender, B.S.; et al. Factors Associated with Durable EFS in Adult B-Cell ALL Patients Achieving MRD-Negative CR after CD19 CAR T-Cell Therapy. Blood 2019, 133, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Maude, S.L.; Frey, N.; Shaw, P.A.; Aplenc, R.; Barrett, D.M.; Bunin, N.J.; Chew, A.; Gonzalez, V.E.; Zheng, Z.; Lacey, S.F.; et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N. Engl. J. Med. 2014, 371, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Curran, K.J.; Margossian, S.P.; Kernan, N.A.; Silverman, L.B.; Williams, D.A.; Shukla, N.; Kobos, R.; Forlenza, C.J.; Steinherz, P.; Prockop, S.; et al. Toxicity and Response after CD19-Specific CAR T-Cell Therapy in Pediatric/Young Adult Relapsed/Refractory B-ALL. Blood 2019, 134, 2361–2368. [Google Scholar] [CrossRef]
- Frey, N.V.; Shaw, P.A.; Hexner, E.O.; Pequignot, E.; Gill, S.; Luger, S.M.; Mangan, J.K.; Loren, A.W.; Perl, A.E.; Maude, S.L.; et al. Optimizing Chimeric Antigen Receptor T-Cell Therapy for Adults with Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2020, 38, 415–422. [Google Scholar] [CrossRef]
- An, F.; Wang, H.; Liu, Z.; Wu, F.; Zhang, J.; Tao, Q.; Li, Y.; Shen, Y.; Ruan, Y.; Zhang, Q.; et al. Influence of Patient Characteristics on Chimeric Antigen Receptor T Cell Therapy in B-Cell Acute Lymphoblastic Leukemia. Nat. Commun. 2020, 11, 5928. [Google Scholar] [CrossRef]
- Roddie, C.; Dias, J.; O’Reilly, M.A.; Abbasian, M.; Cadinanos-Garai, A.; Vispute, K.; Bosshard-Carter, L.; Mitsikakou, M.; Mehra, V.; Roddy, H.; et al. Durable Responses and Low Toxicity After Fast Off-Rate CD19 Chimeric Antigen Receptor-T Therapy in Adults with Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2021, 39, 3352–3363. [Google Scholar] [CrossRef]
- Laetsch, T.W.; Maude, S.L.; Rives, S.; Hiramatsu, H.; Bittencourt, H.; Bader, P.; Baruchel, A.; Boyer, M.; De Moerloose, B.; Qayed, M.; et al. Three-Year Update of Tisagenlecleucel in Pediatric and Young Adult Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia in the ELIANA Trial. J. Clin. Oncol. 2023, 41, 1664–1669. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.D.; Bishop, M.R.; Oluwole, O.O.; Logan, A.C.; Baer, M.R.; Donnellan, W.B.; O’Dwyer, K.M.; Holmes, H.; Arellano, M.L.; Ghobadi, A.; et al. KTE-X19 Anti-CD19 CAR T-Cell Therapy in Adult Relapsed/Refractory Acute Lymphoblastic Leukemia: ZUMA-3 Phase 1 Results. Blood 2021, 138, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Schultz, L.M.; Baggott, C.; Prabhu, S.; Pacenta, H.L.; Phillips, C.L.; Rossoff, J.; Stefanski, H.E.; Talano, J.-A.; Moskop, A.; Margossian, S.P.; et al. Disease Burden Affects Outcomes in Pediatric and Young Adult B-Cell Lymphoblastic Leukemia After Commercial Tisagenlecleucel: A Pediatric Real-World Chimeric Antigen Receptor Consortium Report. J. Clin. Oncol. 2022, 40, 945–955. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, M.C.; Hu, Z.-H.; Curran, K.; Laetsch, T.; Locke, F.; Rouce, R.; Pulsipher, M.A.; Phillips, C.L.; Keating, A.; Frigault, M.J.; et al. Real-World Evidence of Tisagenlecleucel for Pediatric Acute Lymphoblastic Leukemia and Non-Hodgkin Lymphoma. Blood Adv. 2020, 4, 5414–5424. [Google Scholar] [CrossRef] [PubMed]
- Brissot, E.; Peczynski, C.; Labopin, M.; Lussana, F.; Hough, R.; Kuball, J.; Roesler, W.; Furst, S.; Barba, P.; Daskalakis, M.; et al. CD19 Chimeric Antigen Receptor (CAR) T-Cell Therapy for Adults with B-Cell Acute Lymphoblastic Leukemia (B-ALL): A Large Real-World Series from Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation (EBMT). Blood 2022, 140, 10389–10390. [Google Scholar] [CrossRef]
- Anagnostou, T.; Riaz, I.B.; Hashmi, S.K.; Murad, M.H.; Kenderian, S.S. Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy in Acute Lymphocytic Leukaemia: A Systematic Review and Meta-Analysis. Lancet Haematol. 2020, 7, e816–e826. [Google Scholar] [CrossRef] [PubMed]
- Fabrizio, V.A.; Phillips, C.L.; Lane, A.; Baggott, C.; Prabhu, S.; Egeler, E.; Mavroukakis, S.; Pacenta, H.; Rossoff, J.; Stefanski, H.E.; et al. Tisagenlecleucel Outcomes in Relapsed/Refractory Extramedullary ALL: A Pediatric Real World CAR Consortium Report. Blood Adv. 2022, 6, 600–610. [Google Scholar] [CrossRef]
- Leahy, A.B.; Newman, H.; Li, Y.; Liu, H.; Myers, R.; DiNofia, A.; Dolan, J.G.; Callahan, C.; Baniewicz, D.; Devine, K.; et al. CD19-Targeted Chimeric Antigen Receptor T-Cell Therapy for CNS Relapsed or Refractory Acute Lymphocytic Leukaemia: A Post-Hoc Analysis of Pooled Data from Five Clinical Trials. Lancet Haematol. 2021, 8, e711–e722. [Google Scholar] [CrossRef]
- Rubinstein, J.D.; Krupski, C.; Nelson, A.S.; O’Brien, M.M.; Davies, S.M.; Phillips, C.L. Chimeric Antigen Receptor T Cell Therapy in Patients with Multiply Relapsed or Refractory Extramedullary Leukemia. Biol. Blood Marrow Transpl. 2020, 26, e280–e285. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, E.; Ghorashian, S.; Vormoor, B.; De Moerloose, B.; Bodmer, N.; Molostova, O.; Yanir, A.D.; Buechner, J.; Elhasid, R.; Bielorai, B.; et al. CD19 CAR T-Cells for Pediatric Relapsed Acute Lymphoblastic Leukemia with Active CNS Involvement: A Retrospective International Study. Leukemia 2022, 36, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhao, M.; Hu, Y.; Wang, Y.; Li, P.; Cao, J.; Shi, M.; Tan, J.; Zhang, M.; Xiao, X.; et al. Efficacy and Safety of CD19-Specific CAR T Cell-Based Therapy in B-Cell Acute Lymphoblastic Leukemia Patients with CNSL. Blood 2022, 139, 3376–3386. [Google Scholar] [CrossRef] [PubMed]
- Hayden, P.J.; Roddie, C.; Bader, P.; Basak, G.W.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; et al. Management of Adults and Children Receiving CAR T-Cell Therapy: 2021 Best Practice Recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 2022, 33, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Frey, N.V. Relapsed ALL: CAR T vs Transplant vs Novel Therapies. Hematol. Am. Soc. Hematol. Educ. Program 2021, 2021, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.A.; Annesley, C.; Wilson, A.; Summers, C.; Narayanaswamy, P.; Wu, V.; Huang, W.; Johnson, A.; Li, A.; Schultz, K.R.; et al. Efficacy of SCRI-CAR19x22 T Cell Product in B-ALL and Persistence of Anti-CD22 Activity. JCO 2020, 38, 3035. [Google Scholar] [CrossRef]
- Turtle, C.J.; Hanafi, L.-A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR-T Cells of Defined CD4+:CD8+ Composition in Adult B Cell ALL Patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef]
- Kadauke, S.; Myers, R.M.; Li, Y.; Aplenc, R.; Baniewicz, D.; Barrett, D.M.; Barz Leahy, A.; Callahan, C.; Dolan, J.G.; Fitzgerald, J.C.; et al. Risk-Adapted Preemptive Tocilizumab to Prevent Severe Cytokine Release Syndrome After CTL019 for Pediatric B-Cell Acute Lymphoblastic Leukemia: A Prospective Clinical Trial. J. Clin. Oncol. 2021, 39, 920–930. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Tummala, S.; Kebriaei, P.; Wierda, W.; Gutierrez, C.; Locke, F.L.; Komanduri, K.V.; Lin, Y.; Jain, N.; Daver, N.; et al. Chimeric Antigen Receptor T-Cell Therapy—Assessment and Management of Toxicities. Nat. Rev. Clin. Oncol. 2018, 15, 47–62. [Google Scholar] [CrossRef]
- Halyabar, O.; Chang, M.H.; Schoettler, M.L.; Schwartz, M.A.; Baris, E.H.; Benson, L.A.; Biggs, C.M.; Gorman, M.; Lehmann, L.; Lo, M.S.; et al. Calm in the Midst of Cytokine Storm: A Collaborative Approach to the Diagnosis and Treatment of Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome. Pediatr. Rheumatol. Online J. 2019, 17, 7. [Google Scholar] [CrossRef]
- Gust, J.; Hay, K.A.; Hanafi, L.-A.; Li, D.; Myerson, D.; Gonzalez-Cuyar, L.F.; Yeung, C.; Liles, W.C.; Wurfel, M.; Lopez, J.A.; et al. Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017, 7, 1404–1419. [Google Scholar] [CrossRef] [PubMed]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, a B-Cell Maturation Antigen-Directed Chimeric Antigen Receptor T-Cell Therapy in Patients with Relapsed or Refractory Multiple Myeloma (CARTITUDE-1): A Phase 1b/2 Open-Label Study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Levine, E.J.; Grupp, A.S.; Pulsipher, A.M.; Dietz, A.C.; Rives, S.; Myers, G.D.; August, K.J.; Verneris, M.R.; Buechner, J.; Laetsch, T.W.; et al. Pooled Safety Analysis of Tisagenlecleucel in Children and Young Adults with B Cell Acute Lymphoblastic Leukemia. J. Immunother. Cancer 2021, 9, e002287. [Google Scholar] [CrossRef] [PubMed]
- Schultz, L.M.; Eaton, A.; Baggott, C.; Rossoff, J.; Prabhu, S.; Keating, A.K.; Krupski, C.; Pacenta, H.; Philips, C.L.; Talano, J.-A.; et al. Outcomes After Nonresponse and Relapse Post-Tisagenlecleucel in Children, Adolescents, and Young Adults with B-Cell Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2023, 41, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.M.; Li, Y.; Barz Leahy, A.; Barrett, D.M.; Teachey, D.T.; Callahan, C.; Fasano, C.C.; Rheingold, S.R.; DiNofia, A.; Wray, L.; et al. Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults with Relapsed or Refractory Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2021, 39, 3044–3055. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.T.; Waldron, E.; Grupp, S.A.; Levine, J.E.; Laetsch, T.W.; Pulsipher, M.A.; Boyer, M.W.; August, K.J.; Hamilton, J.; Awasthi, R.; et al. Clinical Pharmacology of Tisagenlecleucel in B-Cell Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2018, 24, 6175–6184. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Li, C.; Yin, P.; Guo, T.; Liu, L.; Xia, L.; Wu, Y.; Zhou, F.; Ai, L.; Shi, W.; et al. Anti-CD19 Chimeric Antigen Receptor-Modified T-Cell Therapy Bridging to Allogeneic Hematopoietic Stem Cell Transplantation for Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia: An Open-Label Pragmatic Clinical Trial. Am. J. Hematol. 2019, 94, 1113–1122. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, E.; Nguyen, S.M.; Fountaine, T.J.; Welp, K.; Gryder, B.; Qin, H.; Yang, Y.; Chien, C.D.; Seif, A.E.; Lei, H.; et al. CD19 CAR Immune Pressure Induces B-Precursor Acute Lymphoblastic Leukaemia Lineage Switch Exposing Inherent Leukaemic Plasticity. Nat. Commun. 2016, 7, 12320. [Google Scholar] [CrossRef] [PubMed]
- Rabilloud, T.; Potier, D.; Pankaew, S.; Nozais, M.; Loosveld, M.; Payet-Bornet, D. Single-Cell Profiling Identifies Pre-Existing CD19-Negative Subclones in a B-ALL Patient with CD19-Negative Relapse after CAR-T Therapy. Nat. Commun. 2021, 12, 865. [Google Scholar] [CrossRef]
- Singh, N.; Lee, Y.G.; Shestova, O.; Ravikumar, P.; Hayer, K.E.; Hong, S.J.; Lu, X.M.; Pajarillo, R.; Agarwal, S.; Kuramitsu, S.; et al. Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-Cell Dysfunction. Cancer Discov. 2020, 10, 552–567. [Google Scholar] [CrossRef]
- Bueno, C.; Barrera, S.; Bataller, A.; Ortiz-Maldonado, V.; Elliot, N.; O’Byrne, S.; Wang, G.; Rovira, M.; Gutierrez-Agüera, F.; Trincado, J.L.; et al. CD34+CD19-CD22+ B-Cell Progenitors May Underlie Phenotypic Escape in Patients Treated with CD19-Directed Therapies. Blood 2022, 140, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Pillai, V.; Muralidharan, K.; Meng, W.; Bagashev, A.; Oldridge, D.A.; Rosenthal, J.; Van Arnam, J.; Melenhorst, J.J.; Mohan, D.; DiNofia, A.M.; et al. CAR T-Cell Therapy Is Effective for CD19-Dim B-Lymphoblastic Leukemia but Is Impacted by Prior Blinatumomab Therapy. Blood Adv. 2019, 3, 3539–3549. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.M.; Taraseviciute, A.; Steinberg, S.M.; Lamble, A.J.; Sheppard, J.; Yates, B.; Kovach, A.E.; Wood, B.; Borowitz, M.J.; Stetler-Stevenson, M.; et al. Blinatumomab Nonresponse and High-Disease Burden Are Associated with Inferior Outcomes After CD19-CAR for B-ALL. J. Clin. Oncol. 2022, 40, 932–944. [Google Scholar] [CrossRef]
- Fry, T.J.; Shah, N.N.; Orentas, R.J.; Stetler-Stevenson, M.; Yuan, C.M.; Ramakrishna, S.; Wolters, P.; Martin, S.; Delbrook, C.; Yates, B.; et al. CD22-Targeted CAR T Cells Induce Remission in B-ALL That Is Naive or Resistant to CD19-Targeted CAR Immunotherapy. Nat. Med. 2018, 24, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Highfill, S.L.; Shalabi, H.; Yates, B.; Jin, J.; Wolters, P.L.; Ombrello, A.; Steinberg, S.M.; Martin, S.; Delbrook, C.; et al. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results from a Phase I Anti-CD22 CAR T-Cell Trial. J. Clin. Oncol. 2020, 38, 1938–1950. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Niu, Q.; Deng, B.; Liu, S.; Wu, T.; Gao, Z.; Liu, Z.; Zhang, Y.; Qu, X.; Zhang, Y.; et al. CD22 CAR T-Cell Therapy in Refractory or Relapsed B Acute Lymphoblastic Leukemia. Leukemia 2019, 33, 2854–2866. [Google Scholar] [CrossRef] [PubMed]
- Jeyakumar, N.; Ramakrishna, S.; Frank, M.J.; Sahaf, B.; Feldman, S.A.; Miklos, D.B.; Mackall, C.L.; Davis, K.L.; Muffly, L.; Schultz, L.M. CD22 CAR T Cells Demonstrate Favorable Safety Profile and High Response Rates in Pediatric and Adult B-ALL: Results of a Phase 1b Study. Blood 2022, 140, 2374–2375. [Google Scholar] [CrossRef]
- Myers, R.M.; DiNofia, A.M.; Li, Y.; Diorio, C.; Aplenc, R.; Baniewicz, D.; Brogdon, J.L.; Callahan, C.; Engels, B.; Fraietta, J.A.; et al. CD22-Targeted CAR-Modified T-Cells Safely Induce Remissions in Children and Young Adults with Relapsed, CD19-Negative B-ALL after Treatment with CD19-Targeted CAR T-Cells. Blood 2022, 140, 2376–2377. [Google Scholar] [CrossRef]
- Dai, H.; Wu, Z.; Jia, H.; Tong, C.; Guo, Y.; Ti, D.; Han, X.; Liu, Y.; Zhang, W.; Wang, C.; et al. Bispecific CAR-T Cells Targeting Both CD19 and CD22 for Therapy of Adults with Relapsed or Refractory B Cell Acute Lymphoblastic Leukemia. J. Hematol. Oncol. 2020, 13, 30. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, P.; Zhang, X.; Zhu, X.; Dong, Q.; He, J.; Lin, N.; Wang, Z.; Cai, S.; Ye, X.; et al. Anti-CD19/CD22 Dual CAR-T Therapy for Refractory and Relapsed B-Cell Acute Lymphoblastic Leukemia. Blood 2019, 134, 284. [Google Scholar] [CrossRef]
- Spiegel, J.Y.; Patel, S.; Muffly, L.; Hossain, N.M.; Oak, J.; Baird, J.H.; Frank, M.J.; Shiraz, P.; Sahaf, B.; Craig, J.; et al. CAR T Cells with Dual Targeting of CD19 and CD22 in Adult Patients with Recurrent or Refractory B Cell Malignancies: A Phase 1 Trial. Nat. Med. 2021, 27, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Cordoba, S.; Onuoha, S.; Thomas, S.; Pignataro, D.S.; Hough, R.; Ghorashian, S.; Vora, A.; Bonney, D.; Veys, P.; Rao, K.; et al. CAR T Cells with Dual Targeting of CD19 and CD22 in Pediatric and Young Adult Patients with Relapsed or Refractory B Cell Acute Lymphoblastic Leukemia: A Phase 1 Trial. Nat. Med. 2021, 27, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Schultz, L.M.; Ramakrishna, S.; Baskar, R.; Richards, R.M.; Moon, J.; Baggott, C.; Fujimoto, M.; Kunicki, M.; Li, A.; Jariwala, S.; et al. Long-Term Follow-up of CD19/22 CAR Therapy in Children and Young Adults with B-ALL Reveals Efficacy, Tolerability and High Survival Rates When Coupled with Hematopoietic Stem Cell Transplantation. Blood 2022, 140, 10300–10302. [Google Scholar] [CrossRef]
- Shalabi, H.; Qin, H.; Su, A.; Yates, B.; Wolters, P.L.; Steinberg, S.M.; Ligon, J.A.; Silbert, S.; DéDé, K.; Benzaoui, M.; et al. CD19/22 CAR T Cells in Children and Young Adults with B-ALL: Phase 1 Results and Development of a Novel Bicistronic CAR. Blood 2022, 140, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Hu, X.; Cao, W.; Li, C.; Xiao, Y.; Cao, Y.; Gu, C.; Zhang, S.; Chen, L.; Cheng, J.; et al. Efficacy and Safety of CAR19/22 T-Cell Cocktail Therapy in Patients with Refractory/Relapsed B-Cell Malignancies. Blood 2020, 135, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zuo, S.; Deng, B.; Xu, X.; Li, C.; Zheng, Q.; Ling, Z.; Song, W.; Xu, J.; Duan, J.; et al. Sequential CD19-22 CAR T Therapy Induces Sustained Remission in Children with r/r B-ALL. Blood 2020, 135, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Tang, Y.; Cai, J.; Wan, X.; Hu, S.; Lu, X.; Xie, Z.; Qiao, X.; Jiang, H.; Shao, J.; et al. Coadministration of CD19- and CD22-Directed Chimeric Antigen Receptor T-Cell Therapy in Childhood B-Cell Acute Lymphoblastic Leukemia: A Single-Arm, Multicenter, Phase II Trial. J. Clin. Oncol. 2023, 41, 1670–1683. [Google Scholar] [CrossRef]
- Benjamin, R.; Graham, C.; Yallop, D.; Jozwik, A.; Mirci-Danicar, O.C.; Lucchini, G.; Pinner, D.; Jain, N.; Kantarjian, H.; Boissel, N.; et al. Genome-Edited, Donor-Derived Allogeneic Anti-CD19 Chimeric Antigen Receptor T Cells in Paediatric and Adult B-Cell Acute Lymphoblastic Leukaemia: Results of Two Phase 1 Studies. Lancet 2020, 396, 1885–1894. [Google Scholar] [CrossRef]
- Jain, N.; Roboz, G.J.; Konopleva, M.; Liu, H.; Jabbour, E.; Poirot, C.; Schiffer-Manniou, C.; Gouble, A.; Haider, A.; Zernovak, O.; et al. Preliminary Results of Balli-01: A Phase I Study of UCART22 (Allogeneic Engineered T-Cells Expressing Anti-CD22 Chimeric Antigen Receptor) in Adult Patients with Relapsed or Refractory (R/R) CD22+ B-Cell Acute Lymphoblastic Leukemia (B-ALL). Blood 2020, 136, 7–8. [Google Scholar] [CrossRef]
- Shahid, S.; Ramaswamy, K.; Flynn, J.; Mauguen, A.; Perica, K.; Park, J.H.; Forlenza, C.J.; Shukla, N.N.; Steinherz, P.G.; Margossian, S.P.; et al. Impact of Bridging Chemotherapy on Clinical Outcomes of CD19-Specific CAR T Cell Therapy in Children/Young Adults with Relapsed/Refractory B Cell Acute Lymphoblastic Leukemia. Transpl. Cell. Ther. 2022, 28, 72.e1–72.e8. [Google Scholar] [CrossRef]
- Perica, K.; Flynn, J.; Curran, K.J.; Rivere, I.; Wang, X.; Senechal, B.; Halton, E.; Diamonte, C.; Pineda, J.; Bernal, Y.; et al. Impact of Bridging Chemotherapy on Clinical Outcome of CD19 CAR T Therapy in Adult Acute Lymphoblastic Leukemia. Leukemia 2021, 35, 3268–3271. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.C.; Jacobson, C.; Yi, A.; Gaballa, M.R.; Horick, N.; Rabideau, D.J.; Lindell, K.; DePinho, G.D.; El-Jawahri, A.R.; Frigault, M.J. Association of Bridging Therapy Utilization with Clinical Outcomes in Patients Receiving Chimeric Antigen Receptor (CAR) T-Cell Therapy. J. Immunother. Cancer 2022, 10, e004567. [Google Scholar] [CrossRef]
- Roddie, C.; Neill, L.; Osborne, W.; Iyengar, S.; Tholouli, E.; Irvine, D.; Chaganti, S.; Besley, C.; Bloor, A.; Jones, C.; et al. Effective Bridging Therapy Can Improve CD19 CAR-T Outcomes While Maintaining Safety in Patients with Large B-Cell Lymphoma. Blood Adv. 2023, 7, 2872–2883. [Google Scholar] [CrossRef] [PubMed]
- Dekker, L.; Calkoen, F.G.; Jiang, Y.; Blok, H.; Veldkamp, S.R.; De Koning, C.; Spoon, M.; Admiraal, R.; Hoogerbrugge, P.; Vormoor, B.; et al. Fludarabine Exposure Predicts Outcome after CD19 CAR T-Cell Therapy in Children and Young Adults with Acute Leukemia. Blood Adv. 2022, 6, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.-H.; Cheng, Y.-F.; Zuo, Y.-X.; Chang, Y.-J.; Suo, P.; Wu, J.; Jia, Y.-P.; Lu, A.-D.; Li, Y.-C.; Wang, Y.; et al. Chimeric Antigens Receptor T Cell Therapy Improve the Prognosis of Pediatric Acute Lymphoblastic Leukemia with Persistent/Recurrent Minimal Residual Disease in First Complete Remission. Front. Immunol. 2021, 12, 731435. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wei, J.; Wei, G.; Luo, Y.; Shi, J.; Cui, Q.; Zhao, M.; Liang, A.; Zhang, Q.; Yang, J.; et al. Pre-Transplant MRD Negativity Predicts Favorable Outcomes of CAR-T Therapy Followed by Haploidentical HSCT for Relapsed/Refractory Acute Lymphoblastic Leukemia: A Multi-Center Retrospective Study. J. Hematol. Oncol. 2020, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Summers, C.; Wu, Q.V.; Annesley, C.; Bleakley, M.; Dahlberg, A.; Narayanaswamy, P.; Huang, W.; Voutsinas, J.; Brand, A.; Leisenring, W.; et al. Hematopoietic Cell Transplantation after CD19 Chimeric Antigen Receptor T Cell-Induced Acute Lymphoblastic Lymphoma Remission Confers a Leukemia-Free Survival Advantage. Transpl. Cell. Ther. 2022, 28, 21–29. [Google Scholar] [CrossRef]
Reference | Costimulatory Domain | Study Population and Median Age | Design | N | CR (%) MRD-CR (%) | Survival | CRS (%) Grade ≥ 3 (%) | ICANS (%) Grade ≥ 3 (%) |
---|---|---|---|---|---|---|---|---|
NCT01593693 [24,26] | CD28 | Pediatric and young adults 13.5 y | Phase 1 | 50 | 62% 56% | Median OS: 10.5 m | 70% 22% | 20% 8% |
NCT01865617 [27] | 4-1 BB | Adults 39 y | Phase 1–2 | 53 | 85% 85% | NA | 75% 19% | 23% 23% |
NCT01044069 [25] | CD28 | Adults 42 y | Phase 1 | 53 | 83% 67% | Median OS: 12.9 m Median EFS: 6.1 m | 85% 26% | 44% 42% |
NCT01626495 and NCT01029366 [28] | 4-1BB | Pediatric and adult 14 y | Phase 1–2 | 30 | 90% 73% | 6-month OS: 78% 6-month EFS: 67% | 100% 27% | 43% |
NCT02435849 (ELIANA) [19] | 4-1 BB | Pediatric and young adult 11 y | Phase 2 | 75 | 81% 81% | 12-month OS: 76% 12-month EFS: 50% | 77% 46% | 40% 13% |
NCT02614066 (ZUMA-3) [20] | CD28 | Adult patients 40 y | Phase 2 | 55 | 71% 71% | Median OS: 18.2 m Median RFS: 11.6 m | 89% 24% | 60% 25% |
NCT02028455 (PLAT-02) [21] | 4-1 BB | Pediatric and young adult 12.3 y | Phase 1–2 | 43 | 93% | 12-month OS: 69.5% 12-month EFS: 50.8% | 93% 23% | 49% 21% |
NCT01860937 [29] | CD28 | Pediatric and young adult 13.5 y | Phase 1 | 25 | 75% | NA | 80% 16% | 72% 28% |
NCT02030847 and NCT01029366 [30] | 4-1 BB | Adults 33.8 y | Phase 1–2 | 35 | 69% | Median OS: 19.1 m Median EFS: 5.6 m | 94% 72% | 43% 6% |
NCT02735291 [31] | 4-1 BB | Pediatric and adults 22 y | Phase 2 | 47 | 81% 79% | 12-month OS: 53% 12-month RFS: 45% | 83% 23.4% | 4.3% 2.1% |
NCT02935257 (ALLCAR19) [32] | 4-1 BB | Adults 41.5 y | Phase 1 | 20 | 85% | 12-month OS: 64% 12-month EFS: 48% | 55% 0% | 20% 15% |
Reference | Drug | Study Population and Median Age | N | CR (%) MRD-CR (%) | Survival | CRS (%) Grade ≥ 3 (%) | ICANS (%) Grade ≥ 3 (%) |
---|---|---|---|---|---|---|---|
PRWCC [35] | Tisagenlecleucel | Pediatric and young adults 12 y | 185 | 85% 80% | 12-month OS: 72% 12-month EFS: 50% | 63% 21% | 21% 7% |
Pasquini et al. [36] | Tisagenlecleucel | Pediatric 13.2 y | 255 | 85.5% 99.1% (115/116) | 12-month OS: 60.9% 12-month EFS: 52.4% | 55% 16.1% | 27% 9% |
Brissot et al. [37] | CD19-targeting CAR T-cells | Adults 23.8 y | 118 | 91% NA | 12-month OS: 88.9% in CR 12-month OS: 61.9% in non-CR | 88% NA | NA NA |
Anagnostou et al. [38] | CD19-targeting CAR T-cells | Pediatric and adults NA | 953 | 80% 72% | 12-month OS: 58% | 82% 26% | 29% 12% |
Reference | Costimulatory Domain | Study Population and Median Age | Design | N | Prior CD19 CAR | CR (%) MRD-CR (%) | Survival | CRS (%) Grade ≥ 3 (%) | ICANS (%) Grade ≥ 3 (%) |
---|---|---|---|---|---|---|---|---|---|
NCT02315612 [65,66] | 4-1 BB | Pediatric and young adults 17.5 y | Phase 1 | 58 | 62% | 70% 43% | Median OS: 13.4 m | 86% 76% | 33% 2% |
ChiCTR-OIC-17013523 [67] | 4-1 BB | Pediatric and adults 10 y | NA | 34 | 91% | 71% 53% | NA | 91% 3% | 18% 0% |
NCT04088890 [68] | NA | Pediatric and adults 23 y | Phase 1b | 16 | 58% | 75% 56% | NA | 72% 6% | 6% 6% |
NCT02650414 [69] | 4-1 BB | Pediatric and young adults 16 y | Phase 1 | 17 | 94% | 77% 59% | Median OS: 16.5 m Median EFS: 5.8 m | 82% 0% | 35% 0% |
Trial | Target | Phase | Nb of Patients | Population | Primary Endpoint |
---|---|---|---|---|---|
NCT03876769 | CD19 (tisagenlecleucel) | 2 | 140 | First-line high-risk pediatric and young adult with B-ALL with MRD+ at the end of consolidation | DFS |
NCT05535855 | CD19 (autologous) | 1 | 14 | MRD positive at CR1 | Frequency of AEs DLTs |
NCT04690595 | BAFFR (autologous) | 1 | 24 | R/R after at least 2 lines including CD19 targeting treatment | Incidence of AEs |
NCT04404660 (AUTO1) | CD19 (autologous) | 1–2 | 215 | Adults with R/R B-cell ALL | 1b: frequency of AEs 2: ORR |
NCT02935257 (ALLCAR19) | CD19 (autologous) | 1 | 60 | Adults with R/R ALL, DLBCL, CLL, FL, MCL | |
NCT05480449 (huCART19 prodigy) | CD19 humanized (autologous) | 1–2 | 89 | Pediatric population with R/R disease | Safety ORR |
NCT05613348 (CAR19T2) | CD19 humanized | 1–2 | 70 | Pediatric ALL | ORR MTD AEs |
NCT04609241 | CD79b | 1 | 72 | Pediatric and adults with R/R ALL or NHL | DLT TEAEs |
NCT04781634 | CD19/CD22 (autologous) | 1–2 | 40 | Pediatric and adult patients with R/R ALL | AEs ORR |
NCT04723901 | CD19/CD22 (autologous) | 1–2 | 20 | Young adult and adult with R/R ALL | CR rate |
NCT05225831 | CD19/CD22 (autologous) | 1 | 100 | Pediatric and adult patients with R/R ALL | AEs CR rate |
NCT04049383 | CD19/CD20 (autologous) | 1 | 24 | Pediatric and young adults with R/R ALL | AEs |
NCT04788472 | Sequential CD19 and CD22 (autologous) | 1–2 | 50 | Young adults and adults with R/R Phi+ ALL | DLT Incidence of TEAEs |
NCT04740203 | Sequential CD19 and CD22 (autologous) | 1–2 | 50 | Young adults and adults with R/R Phi-ALL | DLT Incidence of TEAEs |
NCT05164042 | CD19 (allogenic) | 1–2 | 20 | Young adults and adults with R/R ALL | CR rate |
NCT05507827 | CD19/CD22 (allogenic) | 1 | 18 | Adults with R/R ALL | Safety |
NCT05310591 (CAPTiRALL) | Nivolumab + tisagenlecleucel | 1–2 | 26 | Pediatric and young adults with R/R ALL after loss of persistence | % of pts with limiting toxicity Efficacy |
NCT05418088 | CD19/CD20/CD22 (autologous) | 1 | 36 | R/R B-cell malignancies including ALL | Recommended dose for phase 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, K.; Pasquier, F.; Bigenwald, C.; De Botton, S.; Ribrag, V.; Castilla-Llorente, C. CAR T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. J. Clin. Med. 2023, 12, 6883. https://doi.org/10.3390/jcm12216883
Saleh K, Pasquier F, Bigenwald C, De Botton S, Ribrag V, Castilla-Llorente C. CAR T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Medicine. 2023; 12(21):6883. https://doi.org/10.3390/jcm12216883
Chicago/Turabian StyleSaleh, Khalil, Florence Pasquier, Camille Bigenwald, Stéphane De Botton, Vincent Ribrag, and Cristina Castilla-Llorente. 2023. "CAR T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia" Journal of Clinical Medicine 12, no. 21: 6883. https://doi.org/10.3390/jcm12216883
APA StyleSaleh, K., Pasquier, F., Bigenwald, C., De Botton, S., Ribrag, V., & Castilla-Llorente, C. (2023). CAR T-Cells for the Treatment of B-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Medicine, 12(21), 6883. https://doi.org/10.3390/jcm12216883