A Theranostic Approach in SIRT: Value of Pre-Therapy Imaging in Treatment Planning
Abstract
:1. Introduction
2. MAA Particles as a Surrogate to Radioactive Microspheres: Physical and Technical Limitations
3. Accuracy of MAA SPECT/CT for Predicting Tumor and Non-Tumoral Whole Liver Absorbed Doses
4. Value of MAA SPECT/CT to Predict the Tumor to Normal Liver Uptake Ratio
5. MAA Tumor Absorbed Doses Correlate with Clinical Outcome after SIRT
6. Dosimetry Considerations Using MAA SPECT/CT
7. Pre-Therapy Imaging with 166Ho SPECT/CT
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bastiaannet, R.; Kappadath, S.C.; Kunnen, B.; Braat, A.; Lam, M.; de Jong, H. The physics of radioembolization. EJNMMI Phys. 2018, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Braat, A.J. Theragnostics in primary and secondary liver tumors: The need for a personalized approach. Q. J. Nucl. Med. Mol. Imaging 2021, 65, 353–370. [Google Scholar] [CrossRef] [PubMed]
- D’Abadie, P.; Hesse, M.; Louppe, A.; Lhommel, R.; Walrand, S.; Jamar, F. Microspheres Used in Liver Radioembolization: From Conception to Clinical Effects. Molecules 2021, 26, 3966. [Google Scholar] [CrossRef]
- Gomes Marin, J.F.; Nunes, R.F.; Coutinho, A.M.; Zaniboni, E.C.; Costa, L.B.; Barbosa, F.G.; Queiroz, M.A.; Cerri, G.G.; Buchpiguel, C.A. Theranostics in Nuclear Medicine: Emerging and Re-emerging Integrated Imaging and Therapies in the Era of Precision Oncology. Radiographics 2020, 40, 1715–1740. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, M.F.; Kuker, R.A.; Studenski, M.T.; Ahlman, P.P.; Witte, M.; Portelance, L. Lung shunt fraction calculation using (99m)Tc-MAA SPECT/CT imaging for (90)Y microsphere selective internal radiation therapy of liver tumors. EJNMMI Res. 2021, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Theysohn, J.M.; Ruhlmann, M.; Muller, S.; Dechene, A.; Best, J.; Haubold, J.; Umutlu, L.; Gerken, G.; Bockisch, A.; Lauenstein, T.C. Radioembolization with Y-90 Glass Microspheres: Do We Really Need SPECT-CT to Identify Extrahepatic Shunts? PLoS ONE 2015, 10, e0137587. [Google Scholar] [CrossRef] [Green Version]
- Sangro, B.; Inarrairaegui, M.; Bilbao, J.I. Radioembolization for hepatocellular carcinoma. J. Hepatol. 2012, 56, 464–473. [Google Scholar] [CrossRef]
- Braat, A.; Prince, J.F.; van Rooij, R.; Bruijnen, R.C.G.; van den Bosch, M.; Lam, M. Safety analysis of holmium-166 microsphere scout dose imaging during radioembolisation work-up: A cohort study. Eur. Radiol. 2018, 28, 920–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van de Maat, G.H.; Seevinck, P.R.; Elschot, M.; Smits, M.L.; de Leeuw, H.; van Het Schip, A.D.; Vente, M.A.; Zonnenberg, B.A.; de Jong, H.W.; Lam, M.G.; et al. MRI-based biodistribution assessment of holmium-166 poly(L-lactic acid) microspheres after radioembolisation. Eur. Radiol. 2013, 23, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Garin, E.; Tselikas, L.; Guiu, B.; Chalaye, J.; Edeline, J.; de Baere, T.; Assenat, E.; Tacher, V.; Robert, C.; Terroir-Cassou-Mounat, M.; et al. Personalised versus standard dosimetry approach of selective internal radiation therapy in patients with locally advanced hepatocellular carcinoma (DOSISPHERE-01): A randomised, multicentre, open-label phase 2 trial. Lancet Gastroenterol. Hepatol. 2021, 6, 17–29. [Google Scholar] [CrossRef] [PubMed]
- D’Abadie, P.; Walrand, S.; Hesse, M.; Annet, L.; Borbath, I.; Van den Eynde, M.; Lhommel, R.; Jamar, F. Prediction of tumor response and patient outcome after radioembolization of hepatocellular carcinoma using 90Y-PET-computed tomography dosimetry. Nucl. Med. Commun. 2021, 42, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, C.; Mira, M.; Bhoori, S.; Bormolini, G.; Maccauro, M.; Spreafico, C.; Cascella, T.; Cavallo, A.; De Nile, M.C.; Mazzaglia, S.; et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: Treatment optimization using the dose-toxicity relationship. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 3018–3032. [Google Scholar] [CrossRef] [PubMed]
- D’Abadie, P.; Walrand, S.; Lhommel, R.; Hesse, M.; Borbath, I.; Jamar, F. Optimization of the Clinical Effectiveness of Radioembolization in Hepatocellular Carcinoma with Dosimetry and Patient-Selection Criteria. Curr. Oncol. 2022, 29, 2422–2434. [Google Scholar] [CrossRef]
- Lau, W.Y.; Kennedy, A.S.; Kim, Y.H.; Lai, H.K.; Lee, R.C.; Leung, T.W.; Liu, C.S.; Salem, R.; Sangro, B.; Shuter, B.; et al. Patient selection and activity planning guide for selective internal radiotherapy with yttrium-90 resin microspheres. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Cicone, F.; Gnesin, S.; Cremonesi, M. Dosimetry of nuclear medicine therapies: Current controversies and impact on treatment optimization. Q. J. Nucl. Med. Mol. Imaging 2021, 65, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Lam, M.; Chiesa, C.; Konijnenberg, M.; Cremonesi, M.; Flamen, P.; Gnesin, S.; Bodei, L.; Kracmerova, T.; Luster, M.; et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1682–1699. [Google Scholar] [CrossRef] [PubMed]
- Levillain, H.; Bagni, O.; Deroose, C.M.; Dieudonne, A.; Gnesin, S.; Grosser, O.S.; Kappadath, S.C.; Kennedy, A.; Kokabi, N.; Liu, D.M.; et al. International recommendations for personalised selective internal radiation therapy of primary and metastatic liver diseases with yttrium-90 resin microspheres. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1570–1584. [Google Scholar] [CrossRef]
- Chiesa, C.; Sjogreen-Gleisner, K.; Walrand, S.; Strigari, L.; Flux, G.; Gear, J.; Stokke, C.; Gabina, P.M.; Bernhardt, P.; Konijnenberg, M. EANM dosimetry committee series on standard operational procedures: A unified methodology for (99m)Tc-MAA pre- and (90)Y peri-therapy dosimetry in liver radioembolization with (90)Y microspheres. EJNMMI Phys. 2021, 8, 77. [Google Scholar] [CrossRef]
- Reinders, M.T.M.; Smits, M.L.J.; van Roekel, C.; Braat, A. Holmium-166 Microsphere Radioembolization of Hepatic Malignancies. Semin. Nucl. Med. 2019, 49, 237–243. [Google Scholar] [CrossRef]
- Al-Janabi, M.A.; Yousif, Z.M.; Kadim, A.H.; Al-Salem, A.M. A new technique for the preparation of ready-to-use macroaggregated albumin (MAA) kits to be labelled with 99mTc for lung scanning. Int. J. Appl. Radiat. Isot. 1983, 34, 1473–1478. [Google Scholar] [CrossRef]
- Elschot, M.; Nijsen, J.F.; Lam, M.G.; Smits, M.L.; Prince, J.F.; Viergever, M.A.; van den Bosch, M.A.; Zonnenberg, B.A.; de Jong, H.W. ((9)(9)m)Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: A quantitative evaluation in patients treated with (1)(6)(6)Ho-microspheres. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1965–1975. [Google Scholar] [CrossRef]
- Leung, T.W.; Lau, W.Y.; Ho, S.K.; Ward, S.C.; Chow, J.H.; Chan, M.S.; Metreweli, C.; Johnson, P.J.; Li, A.K. Radiation pneumonitis after selective internal radiation treatment with intraarterial 90yttrium-microspheres for inoperable hepatic tumors. Int. J. Radiat. Oncol. Biol. Phys. 1995, 33, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.J.; Tamrazi, A.; Lam, M.G.; Louie, J.D.; Kao, P.N.; Shah, R.P.; Kadoch, M.A.; Sze, D.Y. Management of High Hepatopulmonary Shunting in Patients Undergoing Hepatic Radioembolization. J. Vasc. Interv. Radiol. 2015, 26, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Smits, M.L.J.; Dassen, M.G.; Prince, J.F.; Braat, A.; Beijst, C.; Bruijnen, R.C.G.; de Jong, H.; Lam, M. The superior predictive value of (166)Ho-scout compared with (99m)Tc-macroaggregated albumin prior to (166)Ho-microspheres radioembolization in patients with liver metastases. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 798–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokabi, N.; Webster, L.A.; Elsayed, M.; Switchenko, J.M.; Chen, B.; Brandon, D.; Galt, J.; Sethi, I.; Cristescu, M.; Kappadath, C.; et al. Accuracy and Safety of Scout Dose Resin Yttrium-90 Microspheres for Radioembolization Therapy Treatment Planning: A prospective single-arm clinical trial. J. Vasc. Interv. Radiol. 2022, 33, 1578–1587. [Google Scholar] [CrossRef]
- Garin, E.; Rolland, Y.; Laffont, S.; Edeline, J. Clinical impact of (99m)Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with (90)Y-loaded microspheres. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Abadie, P.; Walrand, S.; Goffette, P.; Amini, N.; Maanen, A.V.; Lhommel, R.; Jamar, F. Antireflux catheter improves tumor targeting in liver radioembolization with resin microspheres. Diagn. Interv. Radiol. 2021, 27, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Garin, E.; Guiu, B.; Edeline, J.; Rolland, Y.; Palard, X. Trans-arterial Radioembolization Dosimetry in 2022. Cardiovasc. Interv. Radiol. 2022, 45, 1608–1621. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Song, Y.S.; Paeng, J.C.; Kim, H.C.; Chung, J.W.; Cheon, G.J.; Chung, J.K.; Lee, D.S.; Kang, K.W. PET/CT-Based Dosimetry in 90Y-Microsphere Selective Internal Radiation Therapy: Single Cohort Comparison With Pretreatment Planning on (99m)Tc-MAA Imaging and Correlation with Treatment Efficacy. Medicine 2015, 94, e945. [Google Scholar] [CrossRef]
- Gnesin, S.; Canetti, L.; Adib, S.; Cherbuin, N.; Silva Monteiro, M.; Bize, P.; Denys, A.; Prior, J.O.; Baechler, S.; Boubaker, A. Partition Model-Based 99mTc-MAA SPECT/CT Predictive Dosimetry Compared with 90Y TOF PET/CT Posttreatment Dosimetry in Radioembolization of Hepatocellular Carcinoma: A Quantitative Agreement Comparison. J. Nucl. Med. 2016, 57, 1672–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richetta, E.; Pasquino, M.; Poli, M.; Cutaia, C.; Valero, C.; Tabone, M.; Paradisi, B.P.; Pacilio, M.; Pellerito, R.E.; Stasi, M. PET-CT post therapy dosimetry in radioembolization with resin (90)Y microspheres: Comparison with pre-treatment SPECT-CT (99m)Tc-MAA results. Phys. Med. 2019, 64, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Jafargholi Rangraz, E.; Tang, X.; Van Laeken, C.; Maleux, G.; Dekervel, J.; Van Cutsem, E.; Verslype, C.; Baete, K.; Nuyts, J.; Deroose, C.M. Quantitative comparison of pre-treatment predictive and post-treatment measured dosimetry for selective internal radiation therapy using cone-beam CT for tumor and liver perfusion territory definition. EJNMMI Res. 2020, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- D’Abadie, P.; Walrand, S.; Hesse, M.; Amini, N.; Lhommel, R.; Sawadogo, K.; Jamar, F. Accurate non-tumoral 99mTc-MAA absorbed dose prediction to plan optimized activities in liver radioembolization using resin microspheres. Phys. Med. 2021, 89, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Haste, P.; Tann, M.; Persohn, S.; LaRoche, T.; Aaron, V.; Mauxion, T.; Chauhan, N.; Dreher, M.R.; Johnson, M.S. Correlation of Technetium-99m Macroaggregated Albumin and Yttrium-90 Glass Microsphere Biodistribution in Hepatocellular Carcinoma: A Retrospective Review of Pretreatment Single Photon Emission CT and Posttreatment Positron Emission Tomography/CT. J. Vasc. Interv. Radiol. 2017, 28, 722–730. [Google Scholar] [CrossRef]
- Kafrouni, M.; Allimant, C.; Fourcade, M.; Vauclin, S.; Guiu, B.; Mariano-Goulart, D.; Ben Bouallegue, F. Analysis of differences between (99m)Tc-MAA SPECT- and (90)Y-microsphere PET-based dosimetry for hepatocellular carcinoma selective internal radiation therapy. EJNMMI Res. 2019, 9, 62. [Google Scholar] [CrossRef] [Green Version]
- Debebe, S.A.; Adjouadi, M.; Gulec, S.A.; Franquiz, J.; McGoron, A.J. (90) Y SPECT/CT quantitative study and comparison of uptake with pretreatment (99 m) Tc-MAA SPECT/CT in radiomicrosphere therapy. J. Appl. Clin. Med. Phys. 2019, 20, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Son, M.H.; Ha, L.N.; Bang, M.H.; Bae, S.; Giang, D.T.; Thinh, N.T.; Paeng, J.C. Diagnostic and prognostic value of (99m)Tc-MAA SPECT/CT for treatment planning of (90)Y-resin microsphere radioembolization for hepatocellular carcinoma: Comparison with planar image. Sci. Rep. 2021, 11, 3207. [Google Scholar] [CrossRef]
- Villalobos, A.; Cheng, B.; Wagstaff, W.; Sethi, I.; Bercu, Z.; Schuster, D.M.; Brandon, D.C.; Galt, J.; Kokabi, N. Tumor-to-Normal Ratio Relationship between Planning Technetium-99 Macroaggregated Albumin and Posttherapy Yttrium-90 Bremsstrahlung SPECT/CT. J. Vasc. Interv. Radiol. 2021, 32, 752–760. [Google Scholar] [CrossRef]
- Meine, T.C.; Brunkhorst, T.; Werncke, T.; Schutze, C.; Vogel, A.; Kirstein, M.M.; Dewald, C.L.A.; Becker, L.S.; Maschke, S.K.; Kretschmann, N.; et al. Comparison of the Uptake of Hepatocellular Carcinoma on Pre-Therapeutic MDCT, CACT, and SPECT/CT, and the Correlation with Post-Therapeutic PET/CT in Patients Undergoing Selective Internal Radiation Therapy. J. Clin. Med. 2021, 10, 3837. [Google Scholar] [CrossRef]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jadoul, A.; Bernard, C.; Lovinfosse, P.; Gerard, L.; Lilet, H.; Cornet, O.; Hustinx, R. Comparative dosimetry between (99m)Tc-MAA SPECT/CT and (90)Y PET/CT in primary and metastatic liver tumors. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.A.; Mahvash, A.; Abdelsalam, M.; Kaseb, A.O.; Kappadath, S.C. Planning dosimetry for (90) Y radioembolization with glass microspheres: Evaluating the fidelity of (99m) Tc-MAA and partition model predictions. Med. Phys. 2020, 47, 5333–5342. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, H.; Goritschan, A.; Paprottka, P.; Jakobs, T.F.; Fendler, W.P.; Todica, A.; Bartenstein, P.; Hacker, M.; Haug, A.R. Predictive Value of 99mTc-MAA SPECT for 90Y-Labeled Resin Microsphere Distribution in Radioembolization of Primary and Secondary Hepatic Tumors. J. Nucl. Med. 2015, 56, 1654–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piasecki, P.; Narloch, J.; Brzozowski, K.; Ziecina, P.; Mazurek, A.; Budzynska, A.; Korniluk, J.; Dziuk, M. The Predictive Value of SPECT/CT imaging in colorectal liver metastases response after 90Y-radioembolization. PLoS ONE 2018, 13, e0200488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, S.; Kim, S.; Cho, J.; Park, J.; Eo, J.S.; Park, S.; Lee, E.; Kim, Y.H.; Choe, J.G. Semi-Quantitative Analysis of Post-Transarterial Radioembolization (90)Y Microsphere Positron Emission Tomography Combined with Computed Tomography (PET/CT) Images in Advanced Liver Malignancy: Comparison With (99m)Tc Macroaggregated Albumin (MAA) Single Photon Emission Computed Tomography (SPECT). Nucl. Med. Mol. Imaging 2016, 50, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiesa, C.; Maccauro, M.; Romito, R.; Spreafico, C.; Pellizzari, S.; Negri, A.; Sposito, C.; Morosi, C.; Civelli, E.; Lanocita, R.; et al. Need, feasibility and convenience of dosimetric treatment planning in liver selective internal radiation therapy with (90)Y microspheres: The experience of the National Tumor Institute of Milan. Q. J. Nucl. Med. Mol. Imaging 2011, 55, 168–197. [Google Scholar]
- Garin, E.; Lenoir, L.; Rolland, Y.; Edeline, J.; Mesbah, H.; Laffont, S.; Poree, P.; Clement, B.; Raoul, J.L.; Boucher, E. Dosimetry based on 99mTc-macroaggregated albumin SPECT/CT accurately predicts tumor response and survival in hepatocellular carcinoma patients treated with 90Y-loaded glass microspheres: Preliminary results. J. Nucl. Med. 2012, 53, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Mazzaferro, V.; Sposito, C.; Bhoori, S.; Romito, R.; Chiesa, C.; Morosi, C.; Maccauro, M.; Marchiano, A.; Bongini, M.; Lanocita, R.; et al. Yttrium-90 radioembolization for intermediate-advanced hepatocellular carcinoma: A phase 2 study. Hepatology 2013, 57, 1826–1837. [Google Scholar] [CrossRef]
- Chiesa, C.; Mira, M.; Maccauro, M.; Spreafico, C.; Romito, R.; Morosi, C.; Camerini, T.; Carrara, M.; Pellizzari, S.; Negri, A.; et al. Radioembolization of hepatocarcinoma with (90)Y glass microspheres: Development of an individualized treatment planning strategy based on dosimetry and radiobiology. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1718–1738. [Google Scholar] [CrossRef]
- Garin, E.; Rolland, Y.; Pracht, M.; Le Sourd, S.; Laffont, S.; Mesbah, H.; Haumont, L.A.; Lenoir, L.; Rohou, T.; Brun, V.; et al. High impact of macroaggregated albumin-based tumour dose on response and overall survival in hepatocellular carcinoma patients treated with (90) Y-loaded glass microsphere radioembolization. Liver Int. 2017, 37, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Bourien, H.; Palard, X.; Rolland, Y.; Le Du, F.; Beuzit, L.; Uguen, T.; Le Sourd, S.; Pracht, M.; Manceau, V.; Lievre, A.; et al. Yttrium-90 glass microspheres radioembolization (RE) for biliary tract cancer: A large single-center experience. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 669–676. [Google Scholar] [CrossRef]
- Lam, M.G.; Goris, M.L.; Iagaru, A.H.; Mittra, E.S.; Louie, J.D.; Sze, D.Y. Prognostic utility of 90Y radioembolization dosimetry based on fusion 99mTc-macroaggregated albumin-99mTc-sulfur colloid SPECT. J. Nucl. Med. 2013, 54, 2055–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chansanti, O.; Jahangiri, Y.; Matsui, Y.; Adachi, A.; Geeratikun, Y.; Kaufman, J.A.; Kolbeck, K.J.; Stevens, J.S.; Farsad, K. Tumor Dose Response in Yttrium-90 Resin Microsphere Embolization for Neuroendocrine Liver Metastases: A Tumor-Specific Analysis with Dose Estimation Using SPECT-CT. J. Vasc. Interv. Radiol. 2017, 28, 1528–1535. [Google Scholar] [CrossRef] [PubMed]
- Hermann, A.L.; Dieudonne, A.; Ronot, M.; Sanchez, M.; Pereira, H.; Chatellier, G.; Garin, E.; Castera, L.; Lebtahi, R.; Vilgrain, V.; et al. Relationship of Tumor Radiation-absorbed Dose to Survival and Response in Hepatocellular Carcinoma Treated with Transarterial Radioembolization with (90)Y in the SARAH Study. Radiology 2020, 296, 673–684. [Google Scholar] [CrossRef]
- D’Abadie, P.; Walrand, S.; Hesse, M.; Borbath, I.; Lhommel, R.; Jamar, F. TCP post-radioembolization and TCP post-EBRT in HCC are similar and can be predicted using the in vitro radiosensitivity. EJNMMI Res. 2022, 12, 40. [Google Scholar] [CrossRef]
- Strigari, L.; Sciuto, R.; Rea, S.; Carpanese, L.; Pizzi, G.; Soriani, A.; Iaccarino, G.; Benassi, M.; Ettorre, G.M.; Maini, C.L. Efficacy and toxicity related to treatment of hepatocellular carcinoma with 90Y-SIR spheres: Radiobiologic considerations. J. Nucl. Med. 2010, 51, 1377–1385. [Google Scholar] [CrossRef] [Green Version]
- Romano, C.; Mazzaglia, S.; Maccauro, M.; Spreafico, C.; Gabutti, A.; Maffi, G.; Morosi, C.; Cascella, T.; Mira, M.; De Nile, M.C.; et al. Radioembolization of Hepatocellular Carcinoma with (90)Y Glass Microspheres: No Advantage of Voxel Dosimetry with Respect to Mean Dose in Dose-Response Analysis with Two Radiological Methods. Cancers 2022, 14, 959. [Google Scholar] [CrossRef]
- D’Abadie, P.; Hesse, M.; Jamar, F.; Lhommel, R.; Walrand, S. (90)Y TOF-PET based EUD reunifies patient survival prediction in resin and glass microspheres radioembolization of HCC tumours. Phys. Med. Biol. 2018, 63, 245010. [Google Scholar] [CrossRef]
- Gil-Alzugaray, B.; Chopitea, A.; Inarrairaegui, M.; Bilbao, J.I.; Rodriguez-Fraile, M.; Rodriguez, J.; Benito, A.; Dominguez, I.; D’Avola, D.; Herrero, J.I.; et al. Prognostic factors and prevention of radioembolization-induced liver disease. Hepatology 2013, 57, 1078–1087. [Google Scholar] [CrossRef]
- Garin, E.; Lenoir, L.; Edeline, J.; Laffont, S.; Mesbah, H.; Poree, P.; Sulpice, L.; Boudjema, K.; Mesbah, M.; Guillygomarc’h, A.; et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: A new personalized promising concept. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 1057–1068. [Google Scholar] [CrossRef] [PubMed]
- Cremonesi, M.; Ferrari, M.; Bartolomei, M.; Orsi, F.; Bonomo, G.; Arico, D.; Mallia, A.; De Cicco, C.; Pedroli, G.; Paganelli, G. Radioembolisation with 90Y-microspheres: Dosimetric and radiobiological investigation for multi-cycle treatment. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 2088–2096. [Google Scholar] [CrossRef] [PubMed]
- Alsultan, A.A.; van Roekel, C.; Barentsz, M.W.; Smits, M.L.J.; Kunnen, B.; Koopman, M.; Bruijnen, R.C.G.; de Keizer, B.; Lam, M. Dose-response and dose-toxicity relationships for yttrium-90 glass radioembolization in patients with colorectal cancer liver metastases. J. Nucl. Med. 2021, 120, 255745. [Google Scholar] [CrossRef]
- Prince, J.F.; van Rooij, R.; Bol, G.H.; de Jong, H.W.; van den Bosch, M.A.; Lam, M.G. Safety of a Scout Dose Preceding Hepatic Radioembolization with 166Ho Microspheres. J. Nucl. Med. 2015, 56, 817–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiesa, C.; Maccauro, M. (166)Ho microsphere scout dose for more accurate radioembolization treatment planning. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 744–747. [Google Scholar] [CrossRef] [Green Version]
- Elschot, M.; Smits, M.L.; Nijsen, J.F.; Lam, M.G.; Zonnenberg, B.A.; van den Bosch, M.A.; Viergever, M.A.; de Jong, H.W. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction. Med. Phys. 2013, 40, 112502. [Google Scholar] [CrossRef]
- Elschot, M.; Nijsen, J.F.; Dam, A.J.; de Jong, H.W. Quantitative evaluation of scintillation camera imaging characteristics of isotopes used in liver radioembolization. PLoS ONE 2011, 6, e26174. [Google Scholar] [CrossRef]
- Van Roekel, C.; van den Hoven, A.F.; Bastiaannet, R.; Bruijnen, R.C.G.; Braat, A.; de Keizer, B.; Lam, M.; Smits, M.L.J. Use of an anti-reflux catheter to improve tumor targeting for holmium-166 radioembolization-a prospective, within-patient randomized study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1658–1668. [Google Scholar] [CrossRef]
- Van Roekel, C.; Bastiaannet, R.; Smits, M.L.J.; Bruijnen, R.C.; Braat, A.; de Jong, H.; Elias, S.G.; Lam, M. Dose-Effect Relationships of (166)Ho Radioembolization in Colorectal Cancer. J. Nucl. Med. 2021, 62, 272–279. [Google Scholar] [CrossRef]
- Stella, M.; Braat, A.; van Rooij, R.; de Jong, H.; Lam, M. Holmium-166 Radioembolization: Current Status and Future Prospective. Cardiovasc. Interv. Radiol. 2022, 45, 1634–1645. [Google Scholar] [CrossRef]
Labelled Particle | Gamma | Positron | |
---|---|---|---|
Radionuclide | Emission Detected by SPECT/CT | Emission Detected by PET/CT | |
(Radioactive Half Life) | (Energy and Abundance) | (Abundance) | |
99mTc | MAA | Direct g radiation (140 keV, 89%) | NA |
(6 h) | |||
166Ho | PLLA microspheres | Direct g radiation (82 KeV, 6,7%) | NA |
(27 h) | |||
90Y | resin and glass microspheres | Indirect radiation (bremsstrahlung, continuous spectrum radiation from 0 to 2.3 MeV) | 0.0036% |
(64 h) |
Characteristics | 99mTc-MAA Particles | 90Y-Resin Microspheres | 90Y-Glass Microspheres | 166Ho-PLLA Microspheres |
---|---|---|---|---|
Diameter (mean) | 15 μm | 32 μm | 25 μm | 30 μm |
Usual number of injected particles (in millions) | 0.3–0.7 | 50 * | 4 * | 30 * |
Studies | Type of Microspheres | Post Therapy Imaging | Type of Tumors | Nb of Patients | Nb of Tumors | TD Estimation (Relative 95% CI) + | NTWLD Estimation (Relative 95% CI) + |
---|---|---|---|---|---|---|---|
Kafrouni et al. 2019 [36] | glass | 90Y PET/CT | HCC | 23 | 24 | −29%; +29% | −34%; +34% |
Richetta et al. 2019 [32] | resin | 90Y PET/CT | HCC | 10 | 10 | −39%; +33% | −24%; +31% |
Jafargholi Rangraz et al. 2020 [33] | resin | 90Y PET/CT | HCC and mets | 31 | 67 | −169%; +146% | −30%, +23% |
Jadoul et al. 2020 [42] | resin and glass | 90Y PET/CT | HCC and mets | 57 | 137 | −100%; +100% | −36%, +36% |
d’Abadie et al. 2021 [34] | resin | 90Y PET/CT | HCC and mets | 66 | 171 | −76%; +320% | −19%, +24% |
Studies + | Microspheres | Tumors | Number of Patients | Tumor Absorbed Dose Threshold | Predictor of Tumor Response | Predictor of Better Survival (Median) |
---|---|---|---|---|---|---|
Chiesa et al. 2011 [47] | glass | HCC | 46 | ≥257 Gy | 85% | NA |
Garin et al. 2012 [48] | glass | HCC | 36 | ≥205 Gy | 100% | 18 mo ° |
(vs. 9 mo) | ||||||
Mazzaferro et al. 2013 [49] | glass | HCC | 52 | ≥500 Gy | 80% | NA |
Chiesa et al. 2015 [50] | glass | HCC | 52 | ≥217 Gy | 100% | NA |
Garin et al. 2017 [51] | glass | HCC | 85 | ≥205 Gy | 98% | 21 mo ° |
(vs. 6.5 mo) | ||||||
Bourien et al. 2019 [52] | glass | CGC | 64 | ≥260 Gy | 88% * | 28.2 mo ° |
(vs. 11.4 mo) | ||||||
Lam et al. 2013 [53] | resin | CRC | 25 | ≥55 Gy | NA | 32.8 mo ° |
(vs. 7.2 mo) | ||||||
Chansanti et al. 2017 [54] | resin | NET | 15 | ≥191 Gy | 83% | NA |
Piasecki et al. 2018 [45] | resin | CRC | 21 | ≥70 Gy | 99% | NA |
Hermann et al. 2020 [55] | resin | HCC | 121 | ≥100 Gy | 72% | 14.1 mo ° |
(vs. 6.8 mo) | ||||||
Son et al. 2021 [38] | resin | HCC | 34 | ≥125 Gy | 86% | NA |
TD | NTWLD | Studies | |||
---|---|---|---|---|---|
Pre-Therapy (MAA) Target Dose | 100 Gy (Resin) | 205 Gy (Glass) | 40 Gy (Resin) | 70 Gy (Glass) | Nb Patients- Nb Tumors [Reference] |
Confidence intervals of the real absorbed dose [95% CI] | [71–129 Gy] | [146–264 Gy] | [26–54 Gy] | [46–94 Gy] | 23–24 |
[36] | |||||
[61–133 Gy] | [125–273 Gy] | [30–52 Gy] | [53–92 Gy] | 10–10 | |
[32] | |||||
[0–246 Gy] | [0–504 Gy] | [28–49 Gy] | [49–86 Gy] | 31–67 | |
[33] | |||||
[0–200 Gy] | [0–410 Gy] | [26–54 Gy] | [45–95 Gy] | 57–137 | |
[42] | |||||
[24–420 Gy] | [49–861 Gy] | [32–50 Gy] | [57–87 Gy] | 66–171 | |
[34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
d’Abadie, P.; Walrand, S.; Lhommel, R.; Hesse, M.; Jamar, F. A Theranostic Approach in SIRT: Value of Pre-Therapy Imaging in Treatment Planning. J. Clin. Med. 2022, 11, 7245. https://doi.org/10.3390/jcm11237245
d’Abadie P, Walrand S, Lhommel R, Hesse M, Jamar F. A Theranostic Approach in SIRT: Value of Pre-Therapy Imaging in Treatment Planning. Journal of Clinical Medicine. 2022; 11(23):7245. https://doi.org/10.3390/jcm11237245
Chicago/Turabian Styled’Abadie, Philippe, Stephan Walrand, Renaud Lhommel, Michel Hesse, and François Jamar. 2022. "A Theranostic Approach in SIRT: Value of Pre-Therapy Imaging in Treatment Planning" Journal of Clinical Medicine 11, no. 23: 7245. https://doi.org/10.3390/jcm11237245
APA Styled’Abadie, P., Walrand, S., Lhommel, R., Hesse, M., & Jamar, F. (2022). A Theranostic Approach in SIRT: Value of Pre-Therapy Imaging in Treatment Planning. Journal of Clinical Medicine, 11(23), 7245. https://doi.org/10.3390/jcm11237245