Minimal Hepatic Encephalopathy Affects Daily Life of Cirrhotic Patients: A Viewpoint on Clinical Consequences and Therapeutic Opportunities
Abstract
:1. Introduction
2. Minimal Hepatic Encephalopathy
3. Diagnosis of Minimal Hepatic Encephalopathy
- -
- Animal naming test (ANT): This is useful as a screening test. Patients have to list as many animals as possible in one minute and a number of animals <15 is indicative of MHE; it is conditioned by education level (<8 years) and age (>80 years);
- -
- Psychometric hepatic encephalopathy score (PHES): This is considered the gold standard for MHE diagnosis (Figure 1). It includes a battery of “paper-pencil” tests for the assessment of psychomotor speed and skill, set shifting, attention, visuospatial orientation, concentration and memory; it lasts about 15 min and a score <−4 is indicative of MHE;
- -
- Critical flicker frequency (CFF): he has to press a button as soon as the impression of fused light switches to oscillating light; it takes about 10 min and it is useful for the evaluation of visual apparatus and cerebral cortex;
- -
- Continuous reaction time test (CRT): The patient has to press a button in response to one-hundred 500 Hz tones presented at 90 dB in random intervals. CRT-index expresses the variability of response times and state of alertness.
- -
- Inhibitory control test (ICT): Several letters are presented at 500 msec intervals, with X and Y interspersed within these letters; patients have to respond only when X and Y are alterning (targets) and not when X and Y are non-altering (lures). This test assesses attention and inhibition (Figure 2);
- -
- Stroop test: In the OFF state, the patient sees a neutral stimulus and has to respond as soon as possible by touching the matching colour of the stimulus to the colour displayed at the bottom of the screen. In the ON phase, the patient sees discordant stimuli and has to touch the colour of the word presented, which is the name of the colour in discordant colouring. This test assesses attention;
- -
- EEG (electroencephalogram): This is useful for studying the cortical activity. In patients with OHE, cerebral activity is slower and three-phase waves are observed [16]. In patients with MHE, the quantative EEG (q-EEG) shows an increase in theta band and a decrease in the MDF (mean dominant frequency) in the posterior derivations, and changes in MDF during sleep represent early markers of brain disfunction. The q-EEG analysis shows alterations in slow oscillatory activity, with an increase in the frequency of dominant delta-rhythm. Evoked potentials: P300 wave (elicited by decision making) has lower amplitude and frequency in MHE [2];
- -
- Magnetic resonance imaging (MRI), MR spectroscopy (MRS) and artificial intelligence: The use of MRI with voxel-based morphometry analysis in patients with liver cirrhosis for the assessment of brain density reveals a reduction in both white and gray matter, mainly in patients with alcoholic etiology, previous OHE and MHE. Such alterations seem to persist even after liver transplantation [17].
- -
- MRS allows the measurement of different metabolites in the brain. In patients with HE, this analysis showed a reduced concentration of myoinositol, increased level of glutamine and decreased choline peak intensities. The elevation of cerebral glutamine concentration is probably do to hyperammonemia, while the lower concentration of myoinositol suggests an important osmoregulatory activity within the astrocyte. These alterations seem to correlate with the grade of HE, as well as with the performance in neuropsychological tests [18,19]. Recently, artificial intelligence has been introduced into many areas of medicine and clinical practice. Several studies have been performed regarding its role in hepatology and MHE diagnosis, mostly using brain magnetic resonance imaging but only in research settings. Machine learning-based approaches role is to examine functional magnetic resonance imaging (fMRI) data in a multivariate manner and extract features predictive of group membership. In particular, using information regarding microstructural integrity and water movement through cell membranes of white matter and the total grey matter volume; machine learning can discriminate cirrhotic patients with and without MHE. However, the costs associated with these technologies are high and currently not sustainable in clinical practice [20].
4. Minimal Hepatic Encephalopathy and Quality of Life
- -
- Sickness impact profile (SIP): this questionnaire is based on 136 items grouped into 12 scales (sleep and rest, eating, work, housekeeping, recreation and hobbies, walking, mobility, body care and movement, social interaction, vigilance, emotional behavior and communication) and provides a total score ranging from 0, corresponding to the best emotional state, to 100, corresponding to the worst one [21];
- -
- Chronic liver disease questionnaire (CLDQ): This contains twenty-nine items grouped into six domains that include abdominal symptoms (three items), fatigue (five items), systemic symptoms (five items), activity (three items), emotional function (eight items) and worry (five items). For each question, patients use a 7-point scale; higher scores indicate better quality of life [22];
- -
- Short Form-36 (SF-36): This is a paper–pencil test adjusted for age and educational level. This test measures eight domains; four related to “physical health” (physical functioning, physical limitation, physical pain and general health) and four related to “mental health” (vitality, mental health and social functioning). Each domain has a score from 0 to 100 and higher scores indicate better quality of life. However, it has only been validated in the Italian population [23,24];
- -
- Nottingham Health Profile (NHP).
4.1. Sleep Disorders
- -
- Insomnia, difficulty getting to sleep or difficulty staying asleep;
- -
- Hypersomnia or excessive sleepiness;
- -
- Unusual events associated with sleep, such as apnea or abnormal movements [36].
- -
- Pittsburgh Sleep Quality Index (PSQI): This is the gold standard for the assessment of the previous month’s sleep, and it lasts about 15 min. It includes 19 items grouped into seven groups (sleep quality, sleep latency, sleep duration, sleep efficiency, sleep disturbance, sleep medication and diurnal dysfunction). For each group is assigned a score from 0 to 3 and their sum results in a total score between 0 and 21. A score > 5 indicates poor sleep quality;
- -
- Sleep Timing and Sleep Quality Screening Questionnaire (STSQS): This is a simplified and faster form of the previous one, taking only 2 min. It provides information on sleep quality and time, such as the time you go to bed, latency, night awakenings and wake up in the morning;
- -
- The Epworth Sleepiness Scale (ESS): this assesses daytime sleepiness in eight different situations (while reading, in front of TV, sitting in a public place, passenger in a car, while stopped in traffic, afternoon rest, while talking to someone and sitting after a meal).
- -
- Polysomnography (PSG): this represents the gold standard because it assesses brain electrogenesis, eye and skeletal muscle movements, blood oxygen level and respiratory rhythms during sleep. However, it is expensive and time consuming, so it is generally used for research purposes.
- -
- Actigraphy: this is a semi-quantitative technique that uses an actigraph, which is a three-dimensional sensor placed on a wrist that records patients’ movements. Actigraphy assesses periods of quiet and movement over one or more days, considering that if a patient is awake there are movements, while if he is asleep, they are absent. Information obtained are related to total sleep duration, sleep latency and number of nocturnal awakenings [37].
4.2. Falls
4.3. Ability to Work and Wages
4.4. Driving Skills
- -
- Neuropsychological assessment of cognitive domains involved in driving activity;
- -
- Virtual simulators: i.e., SIMUVEG driving simulator, STISIM simulator. During the simulation, which lasts > 10 min, several variables related to roads, times, distances, actions and decisions are considered to evaluate the driver’s driving ability. Two essential aspects of driving performance are longitudinal and lateral control of the vehicle. The former is related to average speed, while lateral control is related to angular speed, wheel movement, distance and time-to-line crossing [56,57];
- -
- Road tests: The assessment is performed by a professional driving instructor who is unaware of the subjects’ diagnosis and test results. The assessment is based on the evaluation of four driving categories: car handling, adaptation to traffic situations, caution and vehicle maneuverings. The driving instructor uses a point rating scale to judge driving competence for each category and gave a final score for the overall impression [58].
5. Development of “Overt” Hepatic Encephalopathy and Prognosis
6. Therapy of Minimal Hepatic Encephalopathy
7. Conclusions and Future Perspective
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rose, C.F.; Amodio, P.; Bajaj, J.S.; Dhiman, R.K.; Montagnese, S.; Taylor-Robinson, S.D.; Vilstrup, H.; Jalan, R. Hepatic encephalopathy: Novel insights into classification, pathophysiology and therapy. J. Hepatol. 2020, 73, 1526–1547. [Google Scholar] [CrossRef] [PubMed]
- Ridola, L.; Faccioli, J.; Nardelli, S.; Gioia, S.; Riggio, O. Hepatic Encephalopathy: Diagnosis and Management. J. Transl. Int. Med. 2020, 8, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Riggio, O.; Efrati, C.; Catalano, C.; Pediconi, F.; Mecarelli, O.; Accornero, N.; Nicolao, F.; Angeloni, S.; Masini, A.; Ridola, L.; et al. High prevalence of spontaneous portal-systemic shunts in persistent hepatic encephalopathy: A case-control study. Hepatology 2005, 42, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J. Hepatol. 2019, 70, 172–193. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Umapathy, S.; Dhiman, R.K. Minimal hepatic encephalopathy impairs quality of life. J. Clin. Exp. Hepatol. 2015, 5 (Suppl. 1), S42–S48. [Google Scholar] [CrossRef] [Green Version]
- Zeegen, R.; Drinkwater, J.E.; Dawson, A.M. Method for measuring cerebral dysfunction in patients with liver disease. Br. Med. J. 1970, 2, 633–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines on the management of hepatic encephalopathy. J. Hepatol. 2022, 77, 807–824. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Dhiman, R.K.; Duseja, A.; Chawla, Y.K.; Sharma, A.; Agarwal, R. Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 2007, 45, 549–559. [Google Scholar] [CrossRef]
- Das, A.; Dhiman, R.K.; Saraswat, V.A.; Naik, S.R. Prevalence and natural history of subclinical hepatic encephalopathy in cirrhosis. J. Gastroenterol. Hepatol. 2001, 16, 531–535. [Google Scholar] [CrossRef]
- Faccioli, J.; Nardelli, S.; Gioia, S.; Riggio, O.; Ridola, L. Neurological and psychiatric effects of hepatitis C virus infection. World J. Gastroenterol. 2021, 27, 4846–4861. [Google Scholar] [CrossRef] [PubMed]
- Kalaitzakis, E.; Olsson, R.; Henfridsson, P.; Hugosson, I.; Bengtsson, M.; Jalan, R.; Bjornsson, E. Malnutrition and diabetes mellitus are related to hepatic encephalopathy in patients with liver cirrhosis. Liver Int. 2007, 27, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, M.R.; Avallone, L.; Corsi, I.; Venturini, I.; Baraldi, C.; Zeneroli, M.L. Endogenous benzodiazepines. Therapie 2000, 55, 143–146. [Google Scholar] [PubMed]
- Venturini, I.; Corsi, L.; Avallone, R.; Farina, F.; Bedogni, G.; Baraldi, C.; Baraldi, M.; Zeneroli, M.L. Ammonia and endogenous benzodiazepine-like compounds in the pathogenesis of hepatic encephalopathy. Scand. J. Gastroenterol. 2001, 36, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Rakoski, M.O.; McCammon, R.J.; Piette, J.D.; Iwashyna, T.J.; Marrero, J.A.; Lok, A.S.; Langa, K.M.; Volk, M.L. Burden of cirrhosis on older Americans and their families: Analysis of the health and retirement study. Hepatology 2012, 55, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, J.S.; Etemadian, A.; Hafeezullah, M.; Saeian, K. Testing for minimal hepatic encephalopathy in the United States: An AASLD survey. Hepatology 2007, 45, 833–834. [Google Scholar] [CrossRef]
- Amodio, P.; Montagnese, S. Clinical neurophysiology of hepatic encephalopathy. J. Clin. Exp. Hepatol. 2015, 5 (Suppl. 1), S60–S68. [Google Scholar] [CrossRef] [Green Version]
- Guevara, M.; Baccaro, M.E.; Gómez-Ansón, B.; Frisoni, G.; Testa, C.; Torre, A.; Molinuevo, J.L.; Rami, L.; Pereira, G.; Sotil, E.U.; et al. Cerebral magnetic resonance imaging reveals marked abnormalities of brain tissue density in patients with cirrhosis without overt hepatic encephalopathy. J. Hepatol. 2011, 55, 564–573. [Google Scholar] [CrossRef]
- Kreis, R.; Farrow, N.; Ross, B.D. Localized 1H NMR spectroscopy in patients with chronic hepatic encephalopathy. Analysis of changes in cerebral glutamine, choline and inositols. NMR Biomed. 1991, 4, 109–116. [Google Scholar] [CrossRef]
- Singhal, A.; Nagarajan, R.; Hinkin, C.H.; Kumar, R.; Sayre, J.; Elderkin-Thompson, V.; Huda, A.; Gupta, R.K.; Han, S.H.; Thomas, M.A. Two-dimensional MR spectroscopy of minimal hepatic encephalopathy and neuro-psychological correlates in vivo. J. Magn. Reson. Imaging 2010, 32, 35–43. [Google Scholar] [CrossRef]
- Gazda, J.; Drotar, P.; Drazilova, S.; Gazda, J.; Gazda, M.; Janicko, M.; Jarcuska, P. Artificial Intelligence and Its Application to Minimal Hepatic Encephalopathy Diagnosis. J. Pers. Med. 2021, 11, 1090. [Google Scholar] [CrossRef]
- Bergner, M.; Bobbitt, R.A.; Carter, W.B.; Gilson, B.S. The Sickness Impact Profile: Development and final revision of a health status measure. Med. Care 1981, 19, 787–805. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Guyatt, G.; Kiwi, M.; Boparai, N.; King, D. Development of a disease specific questionnaire to measure health related quality of life in patients with chronic liver disease. Gut 1999, 45, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Apolone, G.; Mosconi, P. The Italian SF-36 Health Survey: Translation, validation and norming. J. Clin. Epidemiol. 1998, 51, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Ridola, L.; Nardelli, S.; Gioia, S.; Riggio, O. Quality of life in patients with minimal hepatic encephalopathy. World J. Gastroenterol. 2018, 24, 5446–5453. [Google Scholar] [CrossRef]
- Marchesini, G.; Bianchi, G.; Amodio, P.; Salerno, F.; Merli, M.; Panella, C.; Loguercio, C.; Apolone, G.; Niero, M.; Abbiati, R. Factors associated with poor health-related quality of life of patients with cirrhosis. Gastroenterology 2001, 120, 170–178. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Boparai, N.; Price, L.L.; Kiwi, M.L.; McCormick, M.; Guyatt, G. Health-related quality of life in chronic liver disease: The impact of type and severity of disease. Am. J. Gastroenterol. 2001, 96, 2199–2205. [Google Scholar] [CrossRef]
- Labenz, C.; Baron, J.S.; Toenges, G.; Schattenberg, J.M.; Nagel, M.; Sprinzl, M.F.; Nguyen-Tat, M.; Zimmermann, T.; Huber, Y.; Marquardt, J.U.; et al. Prospective evaluation of the impact of covert hepatic encephalopathy on quality of life and sleep in cirrhotic patients. Aliment. Pharmacol. Ther. 2018, 48, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Nardelli, S.; Pentassuglio, I.; Pasquale, C.; Ridola, L.; Moscucci, F.; Merli, M.; Mina, C.; Marianetti, M.; Fratino, M.; Izzo, C.; et al. Depression, anxiety and alexithymia symptoms are major determinants of health related quality of life (HRQoL) in cirrhotic patients. Metab. Brain. Dis. 2013, 28, 239–243. [Google Scholar] [CrossRef]
- Groeneweg, M.; Quero, J.C.; De Bruijn, I.; Hartmann, I.J.; Essink-bot, M.L.; Hop, W.C.; Schalm, S.W. Subclinical hepatic encephalopathy impairs daily functioning. Hepatology 1998, 28, 45–49. [Google Scholar] [CrossRef]
- Schomerus, H.; Hamster, W. Quality of life in cirrhotics with minimal hepatic encephalopathy. Metab. Brain Dis. 2001, 16, 37–41. [Google Scholar] [CrossRef]
- Mina, A.; Moran, S.; Ortiz-Olvera, N.; Mera, R.; Uribe, M. Prevalence of minimal hepatic encephalopathy and quality of life in patients with decompensated cirrhosis. Hepatol. Res. 2014, 44, E92–E99. [Google Scholar] [CrossRef] [PubMed]
- Arguedas, M.R.; DeLawrence, T.G.; McGuire, B.M. Influence of hepatic encephalopathy on health-related quality of life in patients with cirrhosis. Dig. Dis. Sci. 2003, 48, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Samanta, J.; Dhiman, R.K.; Khatri, A.; Thumburu, K.K.; Grover, S.; Duseja, A.; Chawla, Y. Correlation between degree and quality of sleep disturbance and the level of neuropsychiatric impairment in patients with liver cirrhosis. Metab. Brain Dis. 2013, 28, 249–259. [Google Scholar] [CrossRef]
- Montagnese, S.; Middleton, B.; Skene, D.J.; Morgan, M.Y. Night-time sleep disturbance does not correlate with neuropsychiatric impairment in patients with cirrhosis. Liver Int. 2009, 29, 1372–1382. [Google Scholar] [CrossRef] [PubMed]
- Marjot, T.; Ray, D.W.; Williams, F.R.; Tomlinson, J.W.; Armstrong, M.J. Sleep and liver disease: A bidirectional relationship. Lancet Gastroenterol. Hepatol. 2021, 6, 850–863. [Google Scholar] [CrossRef]
- Montagnese, S.; De Pittà, C.; De Rui, M.; Corrias, M.; Turco, M.; Merkel, C.; Amodio, P.; Costa, R.; Skene, D.J.; Gatta, A. Sleep-wake abnormalities in patients with cirrhosis. Hepatology 2014, 59, 705–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formentin, C.; Garrido, M.; Montagnese, S. Assessment and Management of Sleep Disturbance in Cirrhosis. Curr. Hepatol. Rep. 2018, 17, 52–69. [Google Scholar] [CrossRef] [Green Version]
- Sherlock, S.; Summerskill, W.H.; White, L.P.; Phear, E.A. Portal-systemic encephalopathy; neurological complications of liver disease. Lancet 1954, 267, 454–457. [Google Scholar] [CrossRef]
- Wiltfang, J.; Nolte, W.; von Heppe, J.; Bahn, E.; Pilz, J.; Hajak, G.; Rüther, E.; Ramadori, G. Sleep disorders and portal-systemic encephalopathy following transjugular intrahepatic portosystemic stent shunt in patients with liver cirrhosis. Relation to plasma tryptophan. Adv. Exp. Med. Biol. 1999, 467, 169–176. [Google Scholar]
- Bersagliere, A.; Raduazzo, I.D.; Nardi, M.; Schiff, S.; Gatta, A.; Amodio, P.; Achermann, P.; Montagnese, S. Induced hyperammonemia may compromise the ability to generate restful sleep in patients with cirrhosis. Hepatology 2012, 55, 869–878. [Google Scholar] [CrossRef]
- De Rui, M.; Schiff, S.; Aprile, D.; Angeli, P.; Bombonato, G.; Bolognesi, M.; Sacerdoti, D.; Gatta, A.; Merkel, C.; Amodio, P.; et al. Excessive daytime sleepiness and hepatic encephalopathy: It is worth asking. Metab. Brain Dis. 2013, 28, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Sharma, B.C.; Puri, V.; Sachdeva, S.; Srivastava, S. Sleep disturbances in patients of liver cirrhosis with minimal hepatic encephalopathy before and after lactulose therapy. Metab. Brain Dis. 2017, 32, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Saeian, K.; Schubert, C.M.; Franco, R.; Franco, J.; Heuman, D.M. Disruption of sleep architecture in minimal hepatic encephalopathy and ghrelin secretion. Aliment. Pharmacol. Ther. 2011, 34, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhou, J.; Yang, X.; Lv, J.; Shi, Y.; Zeng, X. Changes in sleep architecture and quality in minimal hepatic encephalopathy patients and relationship to psychological dysfunction. Int. J. Clin. Exp. Med. 2015, 8, 21541–21548. [Google Scholar] [PubMed]
- Román, E.; Córdoba, J.; Torrens, M.; Guarner, C.; Soriano, G. Falls and cognitive dysfunction impair health-related quality of life in patients with cirrhosis. Eur. J. Gastroenterol. Hepatol. 2013, 25, 77–84. [Google Scholar] [CrossRef]
- Soriano, G.; Román, E.; Córdoba, J.; Torrens, M.; Poca, M.; Torras, X.; Villanueva, C.; Gich, I.J.; Vargas, V.; Guarner, C. Cognitive Dysfunction in Cirrhosis Is Associated with Falls: A Prospective Study. Hepatology 2012, 55, 1922–1930. [Google Scholar] [CrossRef]
- Román, E.; Córdoba, J.; Torrens, M.; Torras, X.; Villanueva, C.; Vargas, V.; Guarner, C.; Soriano, G. Minimal hepatic encephalopathy is associated with falls. Am. J. Gastroenterol. 2011, 106, 476–482. [Google Scholar] [CrossRef]
- Merli, M.; Riggio, O. Dietary and nutritional indications in hepatic encephalopathy. Metab. Brain Dis. 2009, 24, 211–221. [Google Scholar] [CrossRef]
- Bhanji, R.A.; Moctezuma-Velazquez, C.; Duarte-Rojo, A.; Ebadi, M.; Ghosh, S.; Rose, C.; Montano-Loza, A.J. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol. Int. 2018, 12, 377–386. [Google Scholar] [CrossRef]
- Ridola, L.; Gioia, S.; Faccioli, J.; Riggio, O.; Nardelli, S. Gut liver muscle brain axis: A comprehensive viewpoint on prognosis in cirrhosis. J. Hepatol. 2022, 77, 262–263. [Google Scholar] [CrossRef]
- Nardelli, S.; Gioia, S.; Ridola, L.; Carlin, M.; Cioffi, A.D.; Merli, M.; Spagnoli, A.; Riggio, O. Risk of falls in patients with cirrhosis evaluated by timed up and go test: Does muscle or brain matter more? Dig. Liver Dis. 2022, 54, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Urios, A.; Mangas-Losada, A.; Gimenez-Garzó, C.; González-López, O.; Giner-Durán, R.; Serra, M.A.; Noe, E.; Felipo, V.; Montoliu, C. Altered postural control and stability in cirrhotic patients with minimal hepatic encephalopathy correlate with cognitive deficits. Liver Int. 2017, 37, 1013–1022. [Google Scholar] [CrossRef] [PubMed]
- Joebges, E.M.; Heidemann, M.; Schimke, N.; Hecker, H.; Ennen, J.C.; Weissenborn, K. Bradykinesia in minimal hepatic encephalopathy is due to disturbances in movement initiation. J. Hepatol. 2003, 38, 273–280. [Google Scholar] [CrossRef] [PubMed]
- San Martín-Valenzuela, C.; Borras-Barrachina, A.; Gallego, J.J.; Urios, A.; Mestre-Salvador, V.; Correa-Ghisays, P.; Ballester, M.P.; Escudero-García, D.; Tosca, J.; Montón, C.; et al. Motor and Cognitive Performance in Patients with Liver Cirrhosis with Minimal Hepatic Encephalopathy. J. Clin. Med. 2020, 9, 2154. [Google Scholar] [CrossRef]
- Bajaj, J.S. Minimal hepatic encephalopathy matters in daily life. World J. Gastroenterol. 2008, 14, 3609–3615. [Google Scholar] [CrossRef]
- Felipo, V.; Urios, A.; Valero, P.; Sánchez, M.; Serra, M.A.; Pareja, I.; Rodríguez, F.; Gimenez-Garzó, C.; Sanmartín, J.; Montoliu, C. Serum nitrotyrosine and psychometric tests as indicators of impaired fitness to drive in cirrhotic patients with minimal hepatic encephalopathy. Liver Int. 2013, 33, 1478–1489. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Saeian, K.; Hafeezullah, M.; Hoffmann, R.G.; Hammeke, T.A. Patients with minimal hepatic encephalopathy have poor insight into their driving skills. Clin. Gastroenterol. Hepatol. 2008, 6, 1135–1139. [Google Scholar] [CrossRef]
- Wein, C.; Koch, H.; Popp, B.; Oehler, G.; Schauder, P. Minimal hepatic encephalopathy impairs fitness to drive. Hepatology 2004, 39, 739–745. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Hafeezullah, M.; Hoffmann, R.G.; Saeian, K. Minimal hepatic encephalopathy: A vehicle for accidents and traffic violations. Am. J. Gastroenterol. 2007, 102, 1903–1909. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Saeian, K.; Schubert, C.M.; Hafeezullah, M.; Franco, J.; Varma, R.R.; Gibson, D.P.; Hoffmann, R.G.; Stravitz, R.T.; Heuman, D.M.; et al. Minimal hepatic encephalopathy is associated with motor vehicle crashes: The reality beyond the driving test. Hepatology 2009, 50, 1175–1183. [Google Scholar] [CrossRef] [Green Version]
- Kircheis, G.; Knoche, A.; Hilger, N.; Manhart, F.; Schnitzler, A.; Schulze, H.; Häussinger, D. Hepatic encephalopathy and fitness to drive. Gastroenterology 2009, 137, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Ananthakrishnan, A.N.; McGinley, E.L.; Hoffmann, R.G.; Brasel, K.J. Deleterious effect of cirrhosis on outcomes after motor vehicle crashes using the nationwide inpatient sample. Am. J. Gastroenterol. 2008, 103, 1674–1681. [Google Scholar] [PubMed]
- Riggio, O.; Amodio, P.; Farcomeni, A.; Merli, M.; Nardelli, S.; Pasquale, C.; Pentassuglio, I.; Gioia, S.; Onori, E.; Piazza, N.; et al. A Model for Predicting Development of Overt Hepatic Encephalopathy in Patients with Cirrhosis. Clin. Gastroenterol. Hepatol. 2015, 13, 1346–1352. [Google Scholar] [CrossRef]
- Bustamante, J.; Rimola, A.; Ventura, P.J.; Navasa, M.; Cirera, I.; Reggiardo, V.; Rodés, J. Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J. Hepatol. 1999, 30, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, I.J.; Groeneweg, M.; Quero, J.C.; Beijeman, S.J.; de Man, R.A.; Hop, W.C.; Schalm, S.W. The prognostic significance of subclinical hepatic encephalopathy. Am. J. Gastroenterol. 2000, 95, 2029–2034. [Google Scholar] [CrossRef] [PubMed]
- Romero-Gómez, M.; Boza, F.; García-Valdecasas, M.S.; García, G.; Aguilar-Reina, J. Subclinical hepatic encephalopathy predicts the development of overt hepatic encephalopathy. Am. J. Gastroenterol. 2001, 96, 2718–2723. [Google Scholar] [CrossRef]
- Montagnese, S.; Balistreri, E.; Schiff, S.; De Rui, M.; Angeli, P.; Zanus, G.; Cillo, U.; Bombonato, G.; Bolognesi, M.; Sacerdoti, D.; et al. Covert hepatic encephalopathy: Agreement and predictive validity of different indices. World J. Gastroenterol. 2014, 20, 15756–15762. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, R.K.; Kurmi, R.; Thumburu, K.K.; Venkataramarao, S.H.; Agarwal, R.; Duseja, A.; Chawla, Y. Diagnosis and prognostic significance of minimal hepatic encephalopathy in patients with cirrhosis of liver. Dig. Dis. Sci. 2010, 55, 2381–2390. [Google Scholar] [CrossRef] [PubMed]
- Amodio, P.; Del Piccolo, F.; Marchetti, P.; Angeli, P.; Iemmolo, R.; Caregaro, L.; Merkel, C.; Gerunda, G.; Gatta, A. Clinical features and survivial of cirrhotic patients with subclinical cognitive alterations detected by the number connection test and computerized psychometric tests. Hepatology 1999, 29, 1662–1667. [Google Scholar] [CrossRef]
- Watanabe, A.; Sakai, T.; Sato, S.; Imai, F.; Ohto, M.; Arakawa, Y.; Toda, G.; Kobayashi, K.; Muto, Y.; Tsujii, T.; et al. Clinical efficacy of lactulose in cirrhotic patients with and without subclinical hepatic encephalopathy. Hepatology 1997, 26, 1410–1414. [Google Scholar] [CrossRef]
- Dhiman, R.K.; Sawhney, M.S.; Chawla, Y.K.; Das, G.; Ram, S.; Dilawari, J.B. Efficacy of lactulose in cirrhotic patients with subclinical hepatic encephalopathy. Dig. Dis. Sci. 2000, 45, 1549–1552. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.Y.; Alonso, M.; Stanger, L.C. Lactitol and lactulose for the treatment of subclinical hepatic encephalopathy in cirrhotic patients. A randomised, cross-over study. J. Hepatol. 1989, 8, 208–217. [Google Scholar] [CrossRef]
- Luo, M.; Li, L.; Lu, C.Z.; Cao, W.K. Clinical efficacy and safety of lactulose for minimal hepatic encephalopathy: A meta-analysis. Eur. J. Gastroenterol. Hepatol. 2011, 23, 1250–1257. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, Y.; Cao, B.; Tian, Q. Effects of SIBO and rifaximin therapy on MHE caused by hepatic cirrhosis. Int. J. Clin. Exp. Med. 2015, 8, 2954–2957. [Google Scholar] [PubMed]
- Bajaj, J.S.; Heuman, D.M.; Sanyal, A.J.; Hylemon, P.B.; Sterling, R.K.; Stravitz, R.T.; Fuchs, M.; Ridlon, J.M.; Daita, K.; Monteith, P.; et al. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS ONE 2013, 8, e60042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidhu, S.S.; Goyal, O.; Parker, R.A.; Kishore, H.; Sood, A. Rifaximin vs. lactulose in treatment of minimal hepatic encephalopathy. Liver Int. 2016, 36, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Ahuja, C.K.; Agrawal, S.; Kalra, N.; Duseja, A.; Khandelwal, N.; Chawla, Y.; Dhiman, R.K. Reversal of Low-Grade Cerebral Edema after Lactulose/Rifaximin Therapy in Patients with Cirrhosis and Minimal Hepatic Encephalopathy. Clin. Transl. Gastroenterol. 2015, 6, e111. [Google Scholar] [CrossRef]
- Saji, S.; Kumar, S.; Thomas, V. A randomized double blind placebo controlled trial of probiotics in minimal hepatic encephalopathy. Trop. Gastroenterol. 2011, 32, 128–132. [Google Scholar]
- Dalal, R.; McGee, R.G.; Riordan, S.M.; Webster, A.C. Probiotics for people with hepatic encephalopathy. Cochrane Database Syst. Rev. 2017, 2, CD008716. [Google Scholar] [PubMed]
- Sidhu, S.S.; Goyal, O.; Mishra, B.P.; Sood, A.; Chhina, R.S.; Soni, R.K. Rifaximin improves psychometric performance and health-related quality of life in patients with minimal hepatic encephalopathy (the RIME Trial). Am. J. Gastroenterol. 2011, 106, 307–316. [Google Scholar] [CrossRef]
- Mittal, V.V.; Sharma, B.C.; Sharma, P.; Sarin, S.K. A randomized controlled trial comparing lactulose, probiotics, and L-ornithine L-aspartate in treatment of minimal hepatic encephalopathy. Eur. J. Gastroenterol. Hepatol. 2011, 23, 725–732. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, B.C.; Puri, V.; Sarin, S.K. An open-label randomized controlled trial of lactulose and probiotics in the treatment of minimal hepatic encephalopathy. Eur. J. Gastroenterol. Hepatol. 2008, 20, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Heuman, D.M.; Wade, J.B.; Gibson, D.P.; Saeian, K.; Wegelin, J.A.; Hafeezullah, M.; Bell, D.E.; Sterling, R.K.; Stravitz, R.T.; et al. Rifaximin improves driving simulator performance in a randomized trial of patients with minimal hepatic encephalopathy. Gastroenterology 2011, 140, 478–487.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, J.S.; Pinkerton, S.D.; Sanyal, A.J.; Heuman, D.M. Diagnosis and treatment of minimal hepatic encephalopathy to prevent motor vehicle accidents: A cost-effectiveness analysis. Hepatology 2012, 55, 1164–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Román, E.; Nieto, J.C.; Gely, C.; Vidal, S.; Pozuelo, M.; Poca, M.; Juárez, C.; Guarner, C.; Manichanh, C.; Soriano, G. Effect of a Multistrain Probiotic on Cognitive Function and Risk of Falls in Patients with Cirrhosis: A Randomized Trial. Hepatol. Commun. 2019, 3, 632–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajaj, J.S.; Saeian, K.; Christensen, K.M.; Hafeezullah, M.; Varma, R.R.; Franco, J.; Pleuss, J.A.; Krakower, G.; Hoffann, R.G.; Binion, D.G. Probiotic yogurt for the treatment of minimal hepatic encephalopathy. Am. J. Gastroenterol. 2008, 103, 1707–1715. [Google Scholar] [CrossRef]
- Fagan, A.; Gavis, E.A.; Gallagher, M.L.; Mousel, T.; Davis, B.; Puri, P.; Sterling, R.K.; Luketic, V.A.; Lee, H.; Matherly, S.C.; et al. A double-blind randomized placebo-controlled trial of albumin in patients with hepatic encephalopathy: HEAL study. J. Hepatol. 2022, in press. [Google Scholar]
- Horsmans, Y.; Solbreux, P.M.; Daenens, C.; Desager, J.P.; Geubel, A.P. Lactulose improves psychometric testing in cirrhotic patients with subclinical encephalopathy. Aliment. Pharmacol. Ther. 1997, 11, 165–170. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Greco, F.; Barone, G.; Gargante, M.P.; Malaguarnera, M.; Toscano, M.A. Bifidobacterium longum with fructo-oligosaccharide (FOS) treatment in minimal hepatic encephalopathy: A randomized, double-blind, placebo-controlled study. Dig. Dis. Sci. 2007, 52, 3259–3265. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Gargante, M.P.; Cristaldi, E.; Vacante, M.; Risino, C.; Cammalleri, L.; Pennisi, G.; Rampello, L. Acetyl-L-carnitine treatment in minimal hepatic encephalopathy. Dig. Dis. Sci. 2008, 53, 3018–3025. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Pant, S.; Misra, S.; Dwivedi, M.; Misra, A.; Narang, S.; Tewari, R.; Bhadoria, A.S. Effect of rifaximin, probiotics, and l-ornithine l-aspartate on minimal hepatic encephalopathy: A randomized controlled trial. Saudi J. Gastroenterol. 2014, 20, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Chen, J.; Xia, Y.; Wang, B.; Liu, H.; Yang, L.; Wang, Y.; Ling, Z. Role of probiotics in the treatment of minimal hepatic encephalopathy in patients with HBV-induced liver cirrhosis. J. Int. Med. Res. 2018, 46, 3596–3604. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Heuman, D.M.; Hylemon, P.B.; Sanyal, A.J.; Puri, P.; Sterling, R.K.; Luketic, V.; Stravitz, R.T.; Siddiqui, M.S.; Fuchs, M.; et al. Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Aliment. Pharmacol. Ther. 2014, 39, 1113–1125. [Google Scholar] [CrossRef]
- Malaguarnera, G.; Pennisi, M.; Bertino, G.; Motta, M.; Borzì, A.M.; Vicari, E.; Bella, R.; Drago, F.; Malaguarnera, M. Resveratrol in Patients with Minimal Hepatic Encephalopathy. Nutrients 2018, 10, 329. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Y.; Bajaj, J.S.; Wang, J.B.; Shang, J.; Zhou, X.M.; Guo, X.L.; Zhu, X.; Meng, L.N.; Jiang, H.X.; Mi, Y.Q.; et al. Lactulose improves cognition, quality of life, and gut microbiota in minimal hepatic encephalopathy: A multicenter, randomized controlled trial. J. Dig. Dis. 2019, 20, 547–556. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faccioli, J.; Nardelli, S.; Gioia, S.; Riggio, O.; Ridola, L. Minimal Hepatic Encephalopathy Affects Daily Life of Cirrhotic Patients: A Viewpoint on Clinical Consequences and Therapeutic Opportunities. J. Clin. Med. 2022, 11, 7246. https://doi.org/10.3390/jcm11237246
Faccioli J, Nardelli S, Gioia S, Riggio O, Ridola L. Minimal Hepatic Encephalopathy Affects Daily Life of Cirrhotic Patients: A Viewpoint on Clinical Consequences and Therapeutic Opportunities. Journal of Clinical Medicine. 2022; 11(23):7246. https://doi.org/10.3390/jcm11237246
Chicago/Turabian StyleFaccioli, Jessica, Silvia Nardelli, Stefania Gioia, Oliviero Riggio, and Lorenzo Ridola. 2022. "Minimal Hepatic Encephalopathy Affects Daily Life of Cirrhotic Patients: A Viewpoint on Clinical Consequences and Therapeutic Opportunities" Journal of Clinical Medicine 11, no. 23: 7246. https://doi.org/10.3390/jcm11237246