Axial Growth Driven by Physical Development and Myopia among Children: A Two Year Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Examinations and Measurement
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mutti, D.O.; Mitchell, G.L.; Jones, L.A.; Friedman, N.E.; Frane, S.L.; Lin, W.K.; Moeschberger, M.L.; Zadnik, K. Axial Growth and Changes in Lenticular and Corneal Power during Emmetropization in Infants. Investig. Opthalmol. Vis. Sci. 2005, 46, 3074–3080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groot, A.L.; Lissenberg-Witte, B.I.; van Rijn, L.J.; Hartong, D.T. Meta-analysis of ocular axial length in newborns and infants up to 3 years of age. Surv. Ophthalmol. 2022, 67, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Fu, M.; Ding, X.; Morgan, I.G.; Zeng, Y.; He, M. Significant Axial Elongation with Minimal Change in Refraction in 3- to 6-Year-Old Chinese Preschoolers: The Shenzhen Kindergarten Eye Study. Ophthalmology 2017, 124, 1826–1838. [Google Scholar] [CrossRef] [PubMed]
- Baird, P.N.; Saw, S.M.; Lanca, C.; Guggenheim, J.A.; Smith, E.L., III; Zhou, X.; Matsui, K.O.; Wu, P.C.; Sankaridurg, P.; Chia, A.; et al. Myopia. Nat. Rev. Dis. Primers 2020, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Morgan, I.G.; Ohno-Matsui, K.; Saw, S.M. Myopia. Lancet 2012, 379, 1739–1748. [Google Scholar] [CrossRef]
- Xiang, F.; He, M.; Morgan, I. Annual Changes in Refractive Errors and Ocular Components before and after the Onset of Myopia in Chinese Children. Ophthalmology 2012, 119, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Wang, Y.X.; Zheng, Z.Y.; Yang, H.; Xu, L.; Jonas, J.B.; The Beijing Eye Study Group. Ocular Axial Length and Its Associations in Chinese: The Beijing Eye Study. PLoS ONE 2012, 7, e43172. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.E.; Klein, B.E.; Klein, R.; Quandt, Z.; Wong, T.Y. Association of age, stature, and education with ocular dimensions in an older white population. Arch. Ophthalmol. 2009, 127, 88–93. [Google Scholar] [CrossRef]
- Nangia, V.; Jonas, J.B.; Sinha, A.; Matin, A.; Kulkarni, M.; Panda-Jonas, S. Ocular Axial Length and Its Associations in an Adult Population of Central Rural India: The Central India Eye and Medical Study. Ophthalmology 2010, 117, 1360–1366. [Google Scholar] [CrossRef]
- Wong, T.Y.; Foster, P.; Johnson, G.J.; Seah, S.K.L. Education, socioeconomic status, and ocular dimensions in Chinese adults: The Tanjong Pagar Survey. Br. J. Ophthalmol. 2002, 86, 963–968. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Iwase, A.; Sakai, H.; Terasaki, H.; Sakamoto, T.; Araie, M. Differences of body height, axial length, and refractive error at different ages in Kumejima study. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ding, X.; Liu, B.; Zhang, J.; He, M. Longitudinal Changes of Axial Length and Height Are Associated and Concomitant in Children. Investig. Opthalmol. Vis. Sci. 2011, 52, 7949–7953. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, P.; de la Jara, P.L.; Arumugam, B.; Bullimore, M.A. Axial length targets for myopia control. Ophthalmic Physiol. Opt. 2021, 41, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Kearney, S.; Strang, N.C.; Cagnolati, B.; Gray, L.S. Change in body height, axial length and refractive status over a four-year period in caucasian children and young adults. J. Optom. 2020, 13, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Eysteinsson, T.; Jonasson, F.; Arnarsson, A.; Sasaki, H.; Sasaki, K. Relationships between ocular dimensions and adult stature among participants in the Reykjavik Eye Study. Acta Ophthalmol. Scand. 2005, 83, 734–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojaimi, E.; Morgan, I.; Robaei, D.; Rose, K.; Smith, W.; Rochtchina, E.; Mitchell, P. Effect of Stature and Other Anthropometric Parameters on Eye Size and Refraction in a Population-Based Study of Australian Children. Investig. Opthalmol. Vis. Sci. 2005, 46, 4424–4429. [Google Scholar] [CrossRef] [Green Version]
- Saw, S.-M.; Chua, W.-H.; Hong, C.-Y.; Wu, H.-M.; Chia, K.-S.; Stone, R.A.; Tan, D. Height and its relationship to refraction and biometry parameters in Singapore Chinese children. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1408–1413. [Google Scholar]
- Wong, T.Y.; Foster, P.; Johnson, G.J.; Klein, B.E.; Seah, S.K. The relationship between ocular dimensions and refraction with adult stature: The Tanjong Pagar Survey. Investig. Ophthalmol. Vis. Sci. 2001, 42, 1237–1242. [Google Scholar]
- Wei, S.; Sun, Y.; Li, S.; Hu, J.; Cao, K.; An, W.; Guo, J.; Li, H.; Wang, N. Effect of body stature on refraction and ocular biometry in Chinese young adults: The Anyang University Students Eye Study. Clin. Exp. Optom. 2021, 104, 201–206. [Google Scholar] [CrossRef]
- Goss, D.A.; Cox, V.D.; Herrin-Lawson, G.A.; Nielsen, E.D.; Dolton, W.A. Refractive Error, Axial Length, and Height as a Function of Age in Young Myopes. Optom. Vis. Sci. 1990, 67, 332–338. [Google Scholar] [CrossRef]
- Zhang, J.; Hur, Y.M.; Huang, W.; Ding, X.; Feng, K.; He, M. Shared genetic determinants of axial length and height in children: The Guangzhou twin eye study. Arch. Ophthalmol. 2011, 129, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Mutti, D.O.; Hayes, J.R.; Mitchell, G.L.; Jones, L.A.; Moeschberger, M.L.; Cotter, S.A.; Kleinstein, R.N.; Manny, R.E.; Twelker, J.D.; Zadnik, K. Refractive Error, Axial Length, and Relative Peripheral Refractive Error before and after the Onset of Myopia. Investig. Opthalmol. Vis. Sci. 2007, 48, 2510–2519. [Google Scholar] [CrossRef] [PubMed]
- Rozema, J.; Dankert, S.; Iribarren, R.; Lanca, C.; Saw, S.-M. Axial Growth and Lens Power Loss at Myopia Onset in Singaporean Children. Investig. Opthalmol. Vis. Sci. 2019, 60, 3091–3099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCullough, S.; Adamson, G.; Breslin, K.M.M.; McClelland, J.F.; Doyle, L.; Saunders, K.J. Axial growth and refractive change in white European children and young adults: Predictive factors for myopia. Sci. Rep. 2020, 10, 15189. [Google Scholar] [CrossRef] [PubMed]
- Tideman, J.W.L.; Polling, J.R.; Vingerling, J.R.; Jaddoe, V.W.V.; Williams, C.; Guggenheim, J.A.; Klaver, C.C.W. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmol. 2018, 96, 301–309. [Google Scholar] [CrossRef]
- He, M.; Zeng, J.; Liu, Y.; Xu, J.; Pokharel, G.P.; Ellwein, L.B. Refractive Error and Visual Impairment in Urban Children in Southern China. Investig. Opthalmol. Vis. Sci. 2004, 45, 793–799. [Google Scholar] [CrossRef] [Green Version]
SER (D) | AL (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
PNM | PM | p Value * | PNM | PM | p Value † | |||||
n | Median (IQR) | n | Median (IQR) | n | Mean (SD) | n | Mean (SD) | |||
G0 | 293 | 1.375 (1.125, 1.750) | 1 | −1.625 (−1.625, −1.625) | / | 292 | 22.06 (0.62) | 1 | 22.89 (/) | / |
G1 | 1161 | 1.250 (1.000, 1.625) | 11 | −1.375 (−1.625, −0.750) | <0.001 | 1164 | 22.59 (0.67) | 11 | 23.28 (0.77) | <0.001 |
G4 | 1041 | 0.875 (0.625, 1. 250) | 249 | −1.375 (−2.250, −0.750) | <0.001 | 1026 | 23.01 (0.72) | 249 | 24.08 (0.77) | <0.001 |
G7 | 279 | 0.625 (0.375, 1.000) | 421 | −2.125 (−3.125, −1.125) | <0.001 | 281 | 23.39 (0.72) | 421 | 24.62 (0.93) | <0.001 |
SER Change Rate (D/Year) | AL Change Rate (mm/Year) | Height Change Rate (cm/Year) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PNM | PM | PNM | PM | PNM | PM | |||||||
n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | n | Mean (SD) | |
G0 | 1089 | 0.01 (0.34) | 1 | / | 1064 | 0.18 (0.09) | 1 | / | 1091 | 4.54 (1.74) | 1 | / |
G1 | 1215 | −0.15 (0.19) | 11 | −0.72 (0.67) | 1216 | 0.16 (0.08) | 11 | 0.39 (0.23) | 1214 | 4.48 (1.30) | 11 | 4.75 (0.50) |
G4 | 1088 | −0.24 (0.21) | 249 | −0.79 (0.35) | 1083 | 0.17 (0.09) | 242 | 0.40 (0.15) | 1085 | 6.13 (1.69) | 244 | 6.16 (1.52) |
G7 | 323 | −0.12 (0.22) | 421 | −0.42 (0.26) | 323 | 0.11 (0.08) | 421 | 0.21 (0.11) | 323 | 4.17 (2.85) | 421 | 3.72 (2.68) |
Height Change in Different Grades | AL Growth | SER Change | ||
---|---|---|---|---|
Standardized β (95% CI) | p | Standardized β (95% CI) | p | |
G0 | 0.11 (−0.02, 0.23) | 0.088 | 0.04 (−0.09, 0.16) | 0.568 |
G1 | 0.09 (0.04, 0.15) | 0.002 | −0.03 (−0.09, −0.03) | 0.310 |
G4 | 0.17 (0.11, 0.23) | <0.001 | −0.14 (−0.20, −0.09) | <0.001 |
G7 | 0.06 (−0.06, 0.18) | 0.308 | −0.02 (−0.14, 0.09) | 0.679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Guo, Y.; Han, X.; Yu, X.; Chen, Q.; Wang, D.; Chen, X.; Jin, L.; Ha, J.; Li, Y.; et al. Axial Growth Driven by Physical Development and Myopia among Children: A Two Year Cohort Study. J. Clin. Med. 2022, 11, 3642. https://doi.org/10.3390/jcm11133642
Chen S, Guo Y, Han X, Yu X, Chen Q, Wang D, Chen X, Jin L, Ha J, Li Y, et al. Axial Growth Driven by Physical Development and Myopia among Children: A Two Year Cohort Study. Journal of Clinical Medicine. 2022; 11(13):3642. https://doi.org/10.3390/jcm11133642
Chicago/Turabian StyleChen, Shida, Yangfeng Guo, Xiaotong Han, Xinping Yu, Qianyun Chen, Decai Wang, Xiang Chen, Ling Jin, Jason Ha, Yuting Li, and et al. 2022. "Axial Growth Driven by Physical Development and Myopia among Children: A Two Year Cohort Study" Journal of Clinical Medicine 11, no. 13: 3642. https://doi.org/10.3390/jcm11133642
APA StyleChen, S., Guo, Y., Han, X., Yu, X., Chen, Q., Wang, D., Chen, X., Jin, L., Ha, J., Li, Y., Qu, Y., Lin, R., He, M., Zeng, Y., & Liu, Y. (2022). Axial Growth Driven by Physical Development and Myopia among Children: A Two Year Cohort Study. Journal of Clinical Medicine, 11(13), 3642. https://doi.org/10.3390/jcm11133642