Non-Invasive Cardiac Output Determination Using Magnetic Resonance Imaging and Thermodilution in Pulmonary Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Setting
2.2. Right Heart Catheterisation
CO Determined by TD
2.3. CO Determined by MRI
2.4. Statistics
3. Results
3.1. Patients
3.2. CO Measurement Using MRI
3.3. Comparison between MRI and TD
3.4. Comparison between Different MRI Methods
4. Discussion
4.1. Regarding the Statistical Analysis
4.2. Regarding Interchangeability between MRI and TD
4.3. Regarding the Comparison between Different MRI Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galie, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Respir. J. 2015, 46, 903–975. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Maier, R.; Tongers, J.; Niedermeyer, J.; Hohlfeld, J.M.; Hamm, M.; Fabel, H. Determination of cardiac output by the Fick method, thermodilution, and acetylene rebreathing in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 1999, 160, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Fares, W.H.; Blanchard, S.K.; Stouffer, G.A.; Chang, P.P.; Rosamond, W.D.; Ford, H.J.; Aris, R.M. Thermodilution and Fick cardiac outputs differ: Impact on pulmonary hypertension evaluation. Can. Respir. J. 2012, 19, 261–266. [Google Scholar] [CrossRef]
- Alkhodair, A.; Tsang, M.Y.C.; Cairns, J.A.; Swiston, J.R.; Levy, R.D.; Lee, L.; Huckell, V.F.; Brunner, N.W. Comparison of thermodilution and indirect Fick cardiac outputs in pulmonary hypertension. Int. J. Cardiol. 2018, 258, 228–231. [Google Scholar] [CrossRef]
- Rich, J.D.; Archer, S.L.; Rich, S. Noninvasive cardiac output measurements in patients with pulmonary hypertension. Eur. Respir. J. 2013, 42, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Dupuis, M.; Noel-Savina, E.; Prevot, G.; Tetu, L.; Pillard, F.; Riviere, D.; Didier, A. Determination of Cardiac Output in Pulmonary Hypertension Using Impedance Cardiography. Respiration 2018, 96, 500–506. [Google Scholar] [CrossRef]
- Panagiotou, M.; Vogiatzis, I.; Jayasekera, G.; Louvaris, Z.; Mackenzie, A.; McGlinchey, N.; Baker, J.S.; Church, A.C.; Peacock, A.J.; Johnson, M.K. Validation of impedance cardiography in pulmonary arterial hypertension. Clin. Physiol. Funct. Imaging 2018, 38, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, A.R.; Alnuaimat, H.; Li, N.; Carrie, R.; Mubarak, K.K. Value of impedance cardiography in patients studied for pulmonary hypertension. Lung 2011, 189, 369–375. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Emoto, N.; Miyagawa, K.; Nakayama, K.; Kinutani, H.; Tanaka, H.; Shinke, T.; Hirata, K. Noninvasive and simple assessment of cardiac output and pulmonary vascular resistance with whole-body impedance cardiography is useful for monitoring patients with pulmonary hypertension. Circ. J. 2013, 77, 2383–2389. [Google Scholar] [CrossRef] [Green Version]
- Schwaiblmair, M.; Faul, C.; von Scheidt, W.; Berghaus, T.M. Differences of cardiac output measurements by open-circuit acetylene uptake in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: A cohort study. Respir. Res. 2012, 13, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farina, S.; Teruzzi, G.; Cattadori, G.; Ferrari, C.; De Martini, S.; Bussotti, M.; Calligaris, G.; Bartorelli, A.; Agostoni, P. Noninvasive cardiac output measurement by inert gas rebreathing in suspected pulmonary hypertension. Am. J. Cardiol. 2014, 113, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Genecand, L.; Adler, D.; Beghetti, M.; Lador, F. Cardiac Output Determination in Precapillary Pulmonary Hypertension: A Systematic Review. Respiration 2021, 100, 1243–1250. [Google Scholar] [CrossRef]
- Wetterslev, M.; Moller-Sorensen, H.; Johansen, R.R.; Perner, A. Systematic review of cardiac output measurements by echocardiography vs. thermodilution: The techniques are not interchangeable. Intensive Care Med. 2016, 42, 1223–1233. [Google Scholar] [CrossRef]
- Kiely, D.G.; Levin, D.; Hassoun, P.; Ivy, D.D.; Jone, P.N.; Bwika, J.; Kawut, S.M.; Lordan, J.; Lungu, A.; Mazurek, J.; et al. EXPRESS: Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulm. Circ. 2019, 9, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Aryal, S.R.; Sharifov, O.F.; Lloyd, S.G. Emerging role of cardiovascular magnetic resonance imaging in the management of pulmonary hypertension. Eur. Respir. Rev. 2020, 29, 190138. [Google Scholar] [CrossRef] [PubMed]
- Remy-Jardin, M.; Ryerson, C.J.; Schiebler, M.L.; Leung, A.N.C.; Wild, J.M.; Hoeper, M.M.; Alderson, P.O.; Goodman, L.R.; Mayo, J.; Haramati, L.B.; et al. Imaging of Pulmonary Hypertension in Adults: A Position Paper from the Fleischner Society. Radiology 2021, 298, 531–549. [Google Scholar] [CrossRef]
- van der Bruggen, C.E.; Handoko, M.L.; Bogaard, H.J.; Marcus, J.T.; Oosterveer, F.P.T.; Meijboom, L.J.; Westerhof, B.E.; Vonk Noordegraaf, A.; de Man, F.S. The Value of Hemodynamic Measurements or Cardiac MRI in the Follow-up of Patients With Idiopathic Pulmonary Arterial Hypertension. Chest 2021, 159, 1575–1585. [Google Scholar] [CrossRef]
- Mauritz, G.J.; Marcus, J.T.; Boonstra, A.; Postmus, P.E.; Westerhof, N.; Vonk-Noordegraaf, A. Non-invasive stroke volume assessment in patients with pulmonary arterial hypertension: Left-sided data mandatory. J. Cardiovasc. Magn. Reson. 2008, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Cecconi, M.; Rhodes, A.; Poloniecki, J.; Della Rocca, G.; Grounds, R.M. Bench-to-bedside review: The importance of the precision of the reference technique in method comparison studies--with specific reference to the measurement of cardiac output. Crit. Care 2009, 13, 201. [Google Scholar] [CrossRef] [Green Version]
- Holverda, S.; Gan, C.T.; Marcus, J.T.; Postmus, P.E.; Boonstra, A.; Vonk-Noordegraaf, A. Impaired stroke volume response to exercise in pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2006, 47, 1732–1733. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Critchley, L.A.; Critchley, J.A. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J. Clin. Monit. Comput. 1999, 15, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Tongers, J.; Leppert, A.; Baus, S.; Maier, R.; Lotz, J. Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and MRI in patients with pulmonary hypertension. Chest 2001, 120, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Po, J.R.; Tong, M.; Meeran, T.; Potluri, A.; Raina, A.; Doyle, M.; Biederman, R. Quantification of Cardiac Output with Phase Contrast Magnetic Resonance Imaging in Patients with Pulmonary Hypertension. J. Clin. Imaging Sci. 2020, 10, 26. [Google Scholar] [CrossRef]
- Rogers, T.; Ratnayaka, K.; Khan, J.M.; Stine, A.; Schenke, W.H.; Grant, L.P.; Mazal, J.R.; Grant, E.K.; Campbell-Washburn, A.; Hansen, M.S.; et al. CMR fluoroscopy right heart catheterization for cardiac output and pulmonary vascular resistance: Results in 102 patients. J. Cardiovasc. Magn. Reson. 2017, 19, 54. [Google Scholar] [CrossRef] [Green Version]
- Swift, A.J.; Rajaram, S.; Hurdman, J.; Hill, C.; Davies, C.; Sproson, T.W.; Morton, A.C.; Capener, D.; Elliot, C.; Condliffe, R.; et al. Noninvasive estimation of PA pressure, flow, and resistance with CMR imaging: Derivation and prospective validation study from the ASPIRE registry. JACC Cardiovasc. Imaging 2013, 6, 1036–1047. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.; Brusca, S.B.; Rhodes, P.S.; Kolb, T.M.; Mathai, S.C.; Tedford, R.J. Use of thermodilution cardiac output overestimates diagnoses of exercise-induced pulmonary hypertension. Pulm. Circ. 2017, 7, 253–255. [Google Scholar] [CrossRef] [Green Version]
- Khirfan, G.; Ahmed, M.K.; Almaaitah, S.; Almoushref, A.; Agmy, G.M.; Dweik, R.A.; Tonelli, A.R. Comparison of Different Methods to Estimate Cardiac Index in Pulmonary Arterial Hypertension. Circulation 2019, 140, 705–707. [Google Scholar] [CrossRef]
- Duknic, M.; Lichtblau, M.; Saxer, S.; Berlier, C.; Schneider, S.R.; Schwarz, E.I.; Carta, A.F.; Furian, M.; Bloch, K.E.; Ulrich, S. Comparison of Repetitive Cardiac Output Measurements at Rest and End-Exercise by Direct Fick Using Pulse Oximetry vs. Blood Gases in Patients With Pulmonary Hypertension. Front. Med. 2021, 8, 776956. [Google Scholar] [CrossRef]
- Lechartier, B.; Chaouat, A.; Aubert, J.D.; Schwitter, J.; Swiss Society for Pulmonary, H. Magnetic resonance imaging in pulmonary hypertension: An overview of current applications and future perspectives. Swiss. Med. Wkly. 2022, 152, w30055. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.; Truong, U.; Browne, L.P.; Morgan, G.J.; Ross, M.; Ing, R.; Hunter, K.S.; Kheyfets, V.O.; Abman, S.H.; Ivy, D.D.; et al. Measuring Flow Hemodynamic Indices and Oxygen Consumption in Children with Pulmonary Hypertension: A Comparison of Catheterization and Phase-Contrast MRI. Pediatr. Cardiol. 2018, 39, 268–274. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Total patients | n = 24 |
Male:Female | 9:15 |
Age at MRI | 60 ± 14 |
Interval between MRI and RHC | 5.8 ± 5.6 |
mPAP (mmHg) | 29 ± 15 |
mPAP < 25 mmHg (no PH) | n = 12 |
mPAP ≥ 25 mmHg (with PH) | n = 12 |
CI (TD) (L min−1 m−2) | 2.5 ± 0.7 |
PVR (WU) | 5.3 ± 4.1 |
TAPSE (mm) | 19 ± 4 |
HR (MRI) (beats/min) | 73 ± 13 |
HR (RHC) (beats/min) | 70 ± 9 |
PH group 1 | n = 4 |
PH group 4 | n = 7 |
Other | n = 1 |
ICC | AAO | DAO | SVC | PA | LPA | RPA |
---|---|---|---|---|---|---|
Inter | 0.981 | 0.983 | 0.826 | 0.926 | 0.889 | 0.901 |
Intra | 0.995 | 0.991 | 0.995 | 0.998 | 0.996 | 0.999 |
CO L/min | SV mL/Beat | |
---|---|---|
TD | 4.7 ± 1.0 | 67 ± 16 |
LV | 5.1 ± 1.1 | 71 ± 19 |
RV | 5.1 ± 1.2 | 73 ± 21 |
AAO | 4.9 ± 1.2 | 70 ± 20 |
PA | 5.5 ± 1.4 | 76 ± 23 |
RPA + LPA | 5.1 ± 1.1 | 71 ± 20 |
DAO + SVC | 4.8 ± 1.2 | 69 ± 21 |
Bland and Altman Analysis | Linear Regression with Coefficient of Correlation (r), Slope (a), and Intercept (b) with SVMRI on the y-Axis and Axis SVTD on the x-Axis | |||||
---|---|---|---|---|---|---|
Compared SVMRI Method | Bias, mL/Beat | 2SD of Bias, mL/Beat | PE (%) | r | a | b mL/Beat |
LV | −5.6 | ±26.9 | 38.5 | 0.80 | 0.93 | 11.8 |
RV | −5.5 | ±26.2 | 37.5 | 0.87 | 0.91 | 9.7 |
AAO | −4.3 | ±24.1 | 34.9 | 0.65 | 0.91 | 17.3 |
PA | −11.3 | ±31.1 | 42.8 | 0.65 | 0.82 | 16.9 |
RPA + LPA | −6.2 | ±25.4 | 36.3 | 0.66 | 0.33 | 18.3 |
DAO + SVC | −2.9 | ±26.3 | 38.2 | 0.61 | 0.85 | 14.3 |
Bland and Altman Analysis | Linear Regression with Coefficient of Correlation (r), Slope (a), and Intercept (b) with the First Method on the y-Axis and the Second Method on the x-Axis | |||||
---|---|---|---|---|---|---|
Compared SVMRI (First Method/Second Method) | Bias, mL/Beat | 2SD of Bias, mL/Beat | PE (%) | r | a | b, mL/Beat |
RV/PA | −6.4 | ±23.7 | 31.3 | 0.89 | 0.83 | 7.8 |
RV/(RPA + LPA) | −3.1 | ±18.3 | 25.2 | 0.91 | 0.91 | 4.9 |
RV/AAO | 0.5 | ±21.6 | 29.9 | 0.88 | 0.91 | 7.7 |
LV/PA | −5.1 | ±29.1 | 39.4 | 0.85 | 0.78 | 12.8 |
LV/(RPA + LPA) | −0.9 | ±24.8 | 34.9 | 0.88 | 0.86 | 10.1 |
LV/AAO | 1.7 | ±21.8 | 31.0 | 0.90 | 0.88 | 10.9 |
AAO/(DAO + SVC) | 1.7 | ±19.4 | 27.9 | 0.94 | 0.86 | 10.3 |
PA/(DAO + VCS) | 8.6 | ±18.3 | 25.1 | 0.93 | 0.91 | 13.6 |
(RPA + LPA)/(DAO + VCS) | 4.1 | ±13.8 | 19.7 | 0.97 | 0.89 | 11.0 |
PA/(RPA + LPA) | 5.0 | ± 19.8 | 26.8 | 0.93 | 0.99 | 4.8 |
PA/AAO | −6.8 | ±18.7 | 25.6 | 0.93 | 0.99 | 6.9 |
(RPA + LPA) /AAO | −2.1 | ±17.9 | 25.5 | 0.94 | 0.94 | 6.3 |
LV/RV | −0.5 | ±17.1 | 23.7 | 0.91 | 0.99 | 1.5 |
LV/(DAO + VCS) | 3.5 | ±23.8 | 33.9 | 0.83 | 0.89 | 4.3 |
RV/(DAO + VCS) | 2.0 | ±18.4 | 25.1 | 0.90 | 0.92 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crowe, L.A.; Genecand, L.; Hachulla, A.-L.; Noble, S.; Beghetti, M.; Vallée, J.-P.; Lador, F. Non-Invasive Cardiac Output Determination Using Magnetic Resonance Imaging and Thermodilution in Pulmonary Hypertension. J. Clin. Med. 2022, 11, 2717. https://doi.org/10.3390/jcm11102717
Crowe LA, Genecand L, Hachulla A-L, Noble S, Beghetti M, Vallée J-P, Lador F. Non-Invasive Cardiac Output Determination Using Magnetic Resonance Imaging and Thermodilution in Pulmonary Hypertension. Journal of Clinical Medicine. 2022; 11(10):2717. https://doi.org/10.3390/jcm11102717
Chicago/Turabian StyleCrowe, Lindsey A., Léon Genecand, Anne-Lise Hachulla, Stéphane Noble, Maurice Beghetti, Jean-Paul Vallée, and Frédéric Lador. 2022. "Non-Invasive Cardiac Output Determination Using Magnetic Resonance Imaging and Thermodilution in Pulmonary Hypertension" Journal of Clinical Medicine 11, no. 10: 2717. https://doi.org/10.3390/jcm11102717