Comparison of Obturation Quality after MTA Orthograde Filling with Various Obturation Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Root Canal Preparation
2.3. Root Canal Obturation
2.4. Micro-CT Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef]
- Darvell, B.W.; Wu, R.C. MTA, a hydraulic silicate cement: Review update and setting reaction. Dent. Mater. 2011, 27, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Parirokh, M. Mineral trioxide aggregate: A comprehensive literature review—Part II: Leakage and biocompatibility investigations. J. Endod. 2010, 36, 190–202. [Google Scholar] [CrossRef]
- Torabinejad, M.; Higa, R.K.; McKendry, D.J.; Ford, T.R.P. Dye leakage of four root-end filling materials: Effects of blood contamination. J. Endod. 1994, 20, 159–163. [Google Scholar] [CrossRef]
- Torabinejad, M.; Wilder Smith, P.; Ford, T.R.P. Comparative investigation of marginal adaptation of mineral trioxide aggregate and other commonly used root end filling materials. J. Endod. 1995, 21, 295–299. [Google Scholar] [CrossRef] [Green Version]
- Torabinejad, M.; Falah, R.; Kettering, J.D.; Ford, T.R.P. Comparative leakage of mineral trioxide aggregate as a root end filling material. J. Endod. 1995, 21, 109–121. [Google Scholar] [CrossRef]
- Ford, T.R.P.; Torabinejad, M.; McKendry, D.J.; Hong, C.U.; Kariyawasam, S.P. Use of mineral trioxide aggregate for repair of furcal perforations. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1995, 79, 756–763. [Google Scholar] [CrossRef]
- Main, C.; Mirzayan, N.; Shabahang, S.; Torabinejad, M. Repair of root perforations using mineral trioxide aggregate: A long-term study. J. Endod. 2004, 30, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.J.; Monsef, M.; Torabinejad, M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J. Endod. 1993, 19, 541–544. [Google Scholar] [CrossRef]
- Aqrabawi, J. Sealing ability of amalgam, super EBA cement, and MTA when used as retrograde filling material. Br. Dent. J. 2000, 188, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Watson, T.F.; Ford, T.R.P. The sealing ability of a mineral trioxide aggregate as a retrograde root filling material. J. Endod. 1993, 19, 591–595. [Google Scholar] [CrossRef]
- Lee, B.N.; Son, H.J.; Noh, H.J.; Koh, J.T.; Chang, H.S.; Hwang, I.N.; Hwang, Y.C.; Oh, W.M. Cytotoxicity of newly developed ortho MTA root-end filling materials. J. Endod. 2012, 38, 1627–1630. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Park, S.J.; Lee, S.H.; Hwang, Y.C.; Yu, M.K.; Min, K.S. Biological effects and washout resistance of a newly developed fast-setting pozzolan cement. J. Endod. 2013, 39, 467–472. [Google Scholar] [CrossRef]
- Kim, M.; Yang, W.; Kim, H.; Ko, H. Comparison of the Biological properties of ProRoot MTA, OrthoMTA, and Endocem MTA cements. J. Endod. 2014, 40, 1649–1653. [Google Scholar] [CrossRef]
- Maroto, M.; Barbería, E.; Planells, P.; Vera, V. Treatment of a non-vital immature incisor with mineral trioxide aggregate (MTA). Dent. Traumatol. 2003, 19, 165–169. [Google Scholar] [CrossRef]
- Shabahang, S.; Torabinejad, M.; Boyne, P.J.; Abedi, H.H.; McMillan, P. Apexification in immature dog teeth using osteogenic protein-1, mineral trioxide aggregate and calcium hydroxide. J. Endod. 1999, 25, 1–5. [Google Scholar] [CrossRef]
- Ford, T.R.P.; Torabinejad, M.; Abedi, H.R.; Bakland, L.K.; Kariyawasam, S.P. Using mineral trioxide aggregate as a pulp-capping material. J. Am. Dent. Assoc. 1996, 127, 1491–1494. [Google Scholar] [CrossRef]
- Eskandarizadeh, A.; Shahpasandzadeh, M.H.; Shahpasandzadeh, M.; Torabi, M.; Parirokh, M. A comparative study on dental pulp response to calcium hydroxide, white and grey mineral trioxide aggregate as pulp capping agents. J. Conserv. Dent. 2011, 14, 351–355. [Google Scholar]
- Güne, B.; Aydinbelge, H.A. Mineral trioxide aggregate apical plug method for the treatment of nonvital immature permanent maxillary incisors: Three case reports. J. Conserv. Dent. 2012, 15, 73–76. [Google Scholar] [CrossRef]
- Torabinejad, M.; Chivian, N. Clinical applications of mineral trioxide aggregate. J. Endod. 1999, 25, 197–205. [Google Scholar] [CrossRef]
- Chen, M.H.; Chen, K.L.; Chen, C.A. Responses of immature permanent teeth with infected necrotic pulp tissue and apical periodontitis/abscess to revascularization procedures. Int. Endod. J. 2012, 45, 294–305. [Google Scholar] [CrossRef]
- Bogen, G.; Kuttler, S. Mineral trioxide aggregate obturation: A review and case series. J. Endod. 2009, 35, 777–790. [Google Scholar] [CrossRef]
- Yoo, J.S.; Chang, S.W.; Oh, S.R. Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: A scanning electron microscopy study. Int. J. Oral Sci. 2014, 6, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Kim, K.J.; Yi, Y.A.; Seo, D.G. Quantitative microleakage analysis of root canal filling materials in single-rooted canals. Scanning 2015, 37, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Al-Hezaimi, K.; Naghshbandi, J.; Oglesby, S.; Simon, J.H.; Rotstein, I. Human saliva penetration of root canals obturated with two types of mineral trioxide aggregate cements. J. Endod. 2005, 31, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Perinpanayagam, H.; Kum, D.J.; Lim, S.M.; Yoo, Y.J.; Chang, S.W.; Lee, W.; Baek, S.H.; Zhu, Q.; Kum, K.Y. Evaluation of three obturation techniques in the apical third of mandibular first molar mesial root canals using micro-computed tomography. J. Dent. Sci. 2016, 11, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortoluzzi, E.A.; Souza, E.M.; Reis, J.M.S.N.; Esberard, R.M.; Tanomaru-Filho, M. Fracture strength of bovine incisors after intra-radicular treatment with MTA in an experimental immature tooth model. Int. Endod. J. 2007, 40, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Bramante, C.M.; Menezes, R.; Moraes, I.G.; Bernardinelli, N.; Garcia, R.B.; Letra, A. Use of MTA and intracanal post reinforcement in a horizontally fractured tooth: A case report. Dent. Traumatol. 2006, 22, 275–278. [Google Scholar] [CrossRef]
- Vizgirda, P.J.; Liewehr, F.R.; Patton, W.R.; McPherson, J.C.; Buxton, T.B. A comparison of laterally condensed gutta-percha, thermoplasticized gutta-percha, and mineral trioxide aggregate as root canal filling materials. J. Endod. 2004, 30, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Jho, W.; Park, J.W.; Kim, E.; Song, M.; Seo, D.G.; Yang, D.K.; Shin, S.J. Comparison of root canal filling quality by mineral trioxide aggregate and gutta percha cones/AH plus sealer. Dent. Mater. J. 2016, 35, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Alsulaimani, R.S. Single-visit endodontic treatment of mature teeth with chronic apical abscesses using mineral trioxide aggregate cement: A randomized clinical trial. BMC Oral Health 2016, 16, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminoshariae, A.; Hartwell, G.R.; Moon, P.C. Placement of mineral trioxide aggregate using two different techniques. J. Endod. 2003, 29, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Wahengbam, B.; Wahengbam, P.; Tikku, A.P. simplified technique of orthograde MTA obturation on the elected canals of posterior teeth: Two case reports. J. Conserv. Dent. 2014, 17, 80–84. [Google Scholar] [CrossRef]
- Giovarruscio, M.; Uccioli, U.; Malentacca, A. A technique for placement of apical MTA plugs using modified thermafil carriers for the filling of canals with wide apices. Int. Endod. J. 2013, 46, 88–97. [Google Scholar] [CrossRef] [PubMed]
- El-Ma′aita, A.M.; Qualtrough, A.J.; Watts, D.C. A micro-computed tomography evaluation of mineral trioxide aggregate root canal fillings. J. Endod. 2012, 38, 670–672. [Google Scholar] [CrossRef] [PubMed]
- Lawley, G.R.; Schindler, W.G.; Walker, W.A., 3rd; Kolodrubetz, D. Evaluation of ultrasonically placed MTA and fracture resistance with intracanal composite resin in a model of apexification. J. Endod. 2004, 30, 167–172. [Google Scholar] [CrossRef]
- Yeung, P.; Liewehr, F.R.; Moon, P.C. A quantitative comparison of the fill density of MTA produced by two placement techniques. J. Endod. 2006, 32, 456–459. [Google Scholar] [CrossRef]
- Kim, U.S.; Shin, S.J.; Chang, S.W. In vitro evaluation of bacterial leakage resistance of an ultrasonically placed mineral trioxide aggregate orthograde apical plug in teeth with wide open apexes: A preliminary study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 107, 52–56. [Google Scholar] [CrossRef]
- Schneider, S.W. A comparison of canal preparations in straight and curved root canals. Oral Surg. Oral Med. Oral Pathol. 1971, 32, 271–275. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J. Endod. 2010, 36, 400–413. [Google Scholar] [CrossRef]
- Vertucci, F.J. Root canal anatomy of the human permanent teeth. Oral Surg. Oral Med. Oral Pathol. 1984, 58, 589. [Google Scholar] [CrossRef]
- Pecora, J.D.; Woelfel, J.B.; Sousa Neto, M.D.; Issa, E.P. Morphologic study of the maxillary molars—II. Internal anatomy. Braz. Dent. J. 1992, 3, 53. [Google Scholar] [PubMed]
- Peikoff, M.D.; Christie, W.H.; Fogel, H.M. The maxillary second molar: Variations in the number of roots and canals. Int. Endod. J. 1996, 29, 365. [Google Scholar] [CrossRef]
- Zaatar, E.l.; Al-Kandari, A.M.; Alhomaidah, S.; Al Yasin, I.M. Frequency of endodontic treatment in Kuwait: Radiographic evaluation of 846 endodontically treated teeth. J. Endod. 1997, 23, 453. [Google Scholar] [CrossRef]
- Pineda, F.; Kuttler, Y. Mesiodistal and buccolingual roentgenographic investigation of 7275 root canals. Oral Surg. Oral Med. Oral Pathol. 1972, 33, 101. [Google Scholar] [CrossRef]
- Jung, M.; Lommel, D.; Klimek, J. The imaging of root canal obturation using micro-CT. Int. Endod. J. 2005, 38, 617–626. [Google Scholar] [CrossRef]
- Zaslansky, P.; Fratzl, P.; Rack, A.; Wu, M.K.; Wesselink, P.F.; Shemesh, H. Identification of root filling interfaces by microscopy and tomography methods. Int. Endod. J. 2011, 44, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Hammad, M.; Qualtrough, A.; Silikas, N. Evaluation of root canal obturation: A three-dimensional in vitro study. J. Endod. 2009, 35, 541–544. [Google Scholar] [CrossRef]
- Keleş, A.; Torabinejad, M.; Keskin, C.; Sah, D.; Uzun, İ.; Alçin, H. Micro-CT evaluation of voids using two root filling techniques in the placement of MTA in mesial root canals of Vertucci type II configuration. Clin. Oral Investig. 2018, 22, 1907–1913. [Google Scholar] [CrossRef]
- Sisli, S.N.; Ozbas, H. Comparative micro–computed tomographic evaluation of the sealing quality of ProRoot MTA and MTA angelus apical plugs placed with various techniques. J. Endod. 2017, 43, 147–151. [Google Scholar] [CrossRef]
- Somma, F.; Cretella, G.; Carotenuto, M. Quality of thermoplasticized and single point root fillings assessed by micro-computed tomography. Int. Endod. J. 2011, 44, 362–369. [Google Scholar] [CrossRef]
- Waltimo, T.; Trope, M.; Haapasalo, M.; Ørstavik, D. Clinical efficacy of treatment procedures in endodontic infection control and one year follow-up of periapical healing. J. Endod. 2005, 31, 863–866. [Google Scholar] [CrossRef] [Green Version]
- Milanovic, I.; Milovanovic, P.; Antonijevic, D.; Dzeletovic, B.; Djuric, M.; Miletic, V. Immediate and long-term porosity of calcium silicate–based sealers. J. Endod. 2020, 46, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Orhan, K.; Celikten, B. Evaluation of the sealing ability of different root canal sealers: A combined SEM and micro-CT study. J. Appl. Oral Sci. 2018, 26, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bentz, D.P.; Garboczi, E.J.; Haecker, C.J.; Jensen, O.M. Effects of cement particle size distribution on performance properties of Portland cement-based materials. Cem. Concr. Res. 1999, 29, 1663–1671. [Google Scholar] [CrossRef]
- Portland Cement Association. How Concrete Is Made. 2005. Available online: http://www.cement.org/basics/concretebasics_concretebasics.asp (accessed on 28 March 2021).
- Koch, K.; Brave, D. Real World Endo: Design features of rotary files and how they affect clinical performance. Oral Health 2002, 1, 39–49. [Google Scholar]
- Ioannidis, K.; Mistakidis, I.; Beltes, P.; Karagiannis, V. Spectrophotometric analysis of coronal discolouration induced by grey and white MTA. Int. Endod. J. 2013, 46, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Felman, D.; Parashos, P. Coronal tooth discoloration and white mineral trioxide aggregate. J. Endod. 2013, 39, 484–487. [Google Scholar] [CrossRef]
- Palma, P.J.; Marques, J.A.; Santos, J.; Falacho, R.I.; Sequeira, D.; Diogo, P.; Caramelo, F.; Ramos, J.C.; Santos, J.M. Tooth discoloration after regenerative endodontic procedures with calcium silicate-based cements—An ex vivo study. Appl. Sci. 2020, 10, 5793. [Google Scholar] [CrossRef]
- Kaup, M.; Dammann, C.H.; Schäfer, E.; Dammaschke, T. Shear bond strength of Biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo. Head Face Med. 2015, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Boutsioukis, C.; Noula, G.; Lambrianidis, T. Ex vivo study of the efficiency of two techniques for the removal of mineral trioxide aggregate used as a root canal filling material. J. Endod. 2008, 34, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
Group | Material | Water/Powder | Composition | Manufacturer |
---|---|---|---|---|
EZ | EZ-seal | 0.6 | Tricalcium silcate, Dicalcium silicate, Zirconium oxide | Ezekiel (Taean, Korea) |
OMTA | OrthoMTA | 0.3 | Tricalcium silcate, Dicalcium silicate, Tricalcium aluminate, Bismuth oxide | BioMTA (Seoul, Korea) |
Group EZ | Group OMTA | p | |||||
---|---|---|---|---|---|---|---|
Group H | Group C | Group R | Group H | Group C | Group R | ||
Total volume (mm3) | 1.65 ± 0.40 | 1.61 ± 0.51 | 1.58 ± 0.22 | 1.74 ± 0.55 | 1.68 ± 0.26 | 2.09 ± 0.68 | 0.133 |
N | 11 | 11 | 11 | 11 | 11 | 11 |
(a) Total Porosity | |||||
Source | Sum of Squares | df | Mean Square | F | p-Value |
Corrected model | 1538.710 | 5 | 307.742 | 6.748 | 0.000 |
Material | 612.181 | 1 | 612.181 | 13.424 | 0.001 |
Obturation technique | 606.881 | 2 | 303.441 | 6.654 | 0.003 |
Material * Obturation technique | 190.024 | 2 | 95.012 | 2.083 | 0.135 |
Error | 2280.105 | 50 | 45.602 | ||
Corrected total | 3818.815 | 55 | |||
(b) Open Porosity | |||||
Source | Sum of Squares | df | Mean Square | F | p-Value |
Corrected model | 1312.172 | 5 | 262.434 | 5.297 | 0.001 |
Material | 562.693 | 1 | 562.693 | 11.358 | 0.001 |
Obturation technique | 519.537 | 2 | 259.769 | 5.243 | 0.009 |
Material * Obturation technique | 125.419 | 2 | 62.710 | 1.266 | 0.291 |
Error | 5633.255 | 50 | 49.543 | ||
Corrected total | 3789.337 | 59 | |||
(c) Closed Porosity | |||||
Source | Sum of Squares | df | Mean Square | F | p-Value |
Corrected model | 14.781 | 5 | 2.956 | 1.510 | 0.204 |
Material | 1.736 | 1 | 1.736 | 0.887 | 0.351 |
Obturation technique | 3.221 | 2 | 1.611 | 0.823 | 0.445 |
Material * Obturation technique | 8.619 | 2 | 4.309 | 2.201 | 0.121 |
Error | 97.894 | 50 | 1.958 | ||
Corrected total | 112.675 | 55 |
Group EZ | Group OMTA | p | |
---|---|---|---|
Closed porosity (%) | 0.68 ± 1.68 | 0.29 ± 1.07 | 0.301 |
Open porosity (%) | 8.84 ± 10.22 | 2.16 ± 2.36 | 0.002 |
Total porosity (%) | 9.43 ± 10.14 | 2.45 ± 2.49 | 0.001 |
Group H | Group C | Group R | |
---|---|---|---|
Closed porosity (%) | 0.85 ± 2.05 a | 0.38 ± 1.25 a | 0.16 ± 0.39 a |
Open porosity (%) | 9.97 ± 11.96 b | 4.31 ± 4.80 c | 2.36 ± 2.06 c |
Total porosity (%) | 10.77 ± 11.81 d | 4.68 ± 4.75 e | 2.49 ± 2.04 e |
Average Size (µm) | <90% (µm) | <50% (µm) | <10% (µm) | |
---|---|---|---|---|
EZ-seal | 3.75 | 7.86 | 2.88 | 0.29 |
OrthoMTA | 2.62 | 4.64 | 2.36 | 1.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, H.J.; Yoon, H.; Jung, H.I.; Shin, D.-H.; Song, M. Comparison of Obturation Quality after MTA Orthograde Filling with Various Obturation Techniques. J. Clin. Med. 2021, 10, 1719. https://doi.org/10.3390/jcm10081719
An HJ, Yoon H, Jung HI, Shin D-H, Song M. Comparison of Obturation Quality after MTA Orthograde Filling with Various Obturation Techniques. Journal of Clinical Medicine. 2021; 10(8):1719. https://doi.org/10.3390/jcm10081719
Chicago/Turabian StyleAn, Hae Jin, Hyunjung Yoon, Hoi In Jung, Dong-Hoon Shin, and Minju Song. 2021. "Comparison of Obturation Quality after MTA Orthograde Filling with Various Obturation Techniques" Journal of Clinical Medicine 10, no. 8: 1719. https://doi.org/10.3390/jcm10081719
APA StyleAn, H. J., Yoon, H., Jung, H. I., Shin, D.-H., & Song, M. (2021). Comparison of Obturation Quality after MTA Orthograde Filling with Various Obturation Techniques. Journal of Clinical Medicine, 10(8), 1719. https://doi.org/10.3390/jcm10081719