The Impact of Morbid Obesity on the Health Outcomes of Hospital Inpatients: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
Statistics
3. Results
3.1. Data
3.2. Characteristics
3.3. Univariate Analysis
3.4. Adjusted Analysis
3.4.1. Comparison of Outcomes between Morbidly Obese and Normal/Overweight Patients
3.4.2. Comparison of Outcomes between Morbidly Obese and Obese Patients
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Australian Institute of Health and Welfare (AIHW): A Picture of Overweight and Obesity in Australia in 2017. Available online: https://www.aihw.gov.au/reports/overweight-obesity/a-picture-of-overweight-and-obesity-in-australia/summary (accessed on 27 July 2021).
- Atlantis, E.; Kormas, N.; Samaras, K.; Fahey, P.; Sumithran, P.; Glastras, S.; Wittert, G.; Fusco, K.; Bishay, R.; Markovic, T.; et al. Clinical Obesity Services in Public Hospitals in Australia: A position statement based on expert consensus. Clin. Obes. 2018, 8, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Must, A.; Spadano, J.; Coakley, E.H.; Field, A.E.; Colditz, G.; Dietz, W.H. The disease burden associated with overweight and obesity. JAMA 1999, 282, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Bogers, R.P.; Bemelmans, W.J.; Hoogenveen, R.T.; Boshuizen, H.C.; Woodward, M.; Knekt, P.; van Dam, R.M.; Hu, F.B.; Visscher, T.L.; Menotti, A.; et al. Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: A meta-analysis of 21 cohort studies including more than 300 000 persons. Arch. Intern. Med. 2007, 167, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Renehan, A.G.; Roberts, D.L.; Dive, C. Obesity and cancer: Pathophysiological and biological mechanisms. Arch. Physiol. Biochem. 2008, 114, 71–83. [Google Scholar] [CrossRef]
- Dee, A.; Kearns, K.; O’Neill, C.; Sharp, L.; Staines, A.; O’Dwyer, V.; Fitzgerald, S.; Perry, I.J. The direct and indirect costs of both overweight and obesity: A systematic review. BMC Res. Notes 2014, 7, 242. [Google Scholar] [CrossRef] [Green Version]
- Bertakis, K.D.; Azari, R. Obesity and the use of health care services. Obes. Res. 2005, 13, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Hauck, K.; Hollingsworth, B. The impact of severe obesity on hospital length of stay. Med. Care 2010, 48, 335–340. [Google Scholar] [CrossRef]
- Doehner, W.; Erdmann, E.; Cairns, R.; Clark, A.L.; Dormandy, J.A.; Ferrannini, E.; Anker, S.D. Inverse relation of body weight and weight change with mortality and morbidity in patients with type 2 diabetes and cardiovascular co-morbidity: An analysis of the PROactive study population. Int. J. Cardiol. 2012, 162, 20–26. [Google Scholar] [CrossRef]
- Carnethon, M.R.; De Chavez, P.J.; Biggs, M.L.; Lewis, C.E.; Pankow, J.S.; Bertoni, A.G.; Golden, S.H.; Liu, K.; Mukamal, K.J.; Campbell-Jenkins, B.; et al. Association of weight status with mortality in adults with incident diabetes. JAMA 2012, 308, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Tobias, D.K.; Pan, A.; Jackson, C.L.; O’Reilly, E.J.; Ding, E.L.; Willett, W.C.; Manson, J.E.; Hu, F.B. Body-mass index and mortality among adults with incident type 2 diabetes. N. Engl. J. Med. 2014, 370, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Elagizi, A.; Kachur, S.; Lavie, C.J.; Carbone, S.; Pandey, A.; Ortega, F.B.; Milani, R.V. An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases. Prog. Cardiovasc. Dis. 2018, 61, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landbo, C.; Prescott, E.; Lange, P.; Vestbo, J.; Almdal, T.P. Prognostic value of nutritional status in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 1999, 160, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.H.; Lewis, M.A.; Shi, Q.; Khan, M.; Cassivi, S.D.; Diasio, R.B.; Sinicrope, F.A. Prognostic impact of body mass index stratified by smoking status in patients with esophageal adenocarcinoma. J. Clin. Oncol. 2011, 29, 4561–4567. [Google Scholar] [CrossRef] [Green Version]
- McEwen, L.N.; Karter, A.J.; Waitzfelder, B.E.; Crosson, J.C.; Marrero, D.G.; Mangione, C.M.; Herman, W.H. Predictors of mortality over 8 years in type 2 diabetic patients: Translating Research Into Action for Diabetes (TRIAD). Diabetes Care 2012, 35, 1301–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaturvedi, N.; Fuller, J.H. Mortality risk by body weight and weight change in people with NIDDM. The WHO Multinational Study of Vascular Disease in Diabetes. Diabetes Care 1995, 18, 766–774. [Google Scholar] [CrossRef]
- Després, J.P. Excess visceral adipose tissue/ectopic fat the missing link in the obesity paradox? J. Am. Coll. Cardiol. 2011, 57, 1887–1889. [Google Scholar] [CrossRef] [Green Version]
- Nazare, J.A.; Smith, J.; Borel, A.L.; Aschner, P.; Barter, P.; Van Gaal, L.; Tan, C.E.; Wittchen, H.U.; Matsuzawa, Y.; Kadowaki, T.; et al. Usefulness of measuring both body mass index and waist circumference for the estimation of visceral adiposity and related cardiometabolic risk profile (from the INSPIRE ME IAA study). Am. J. Cardiol. 2015, 115, 307–315. [Google Scholar] [CrossRef]
- Akinyemiju, T.; Meng, Q.; Vin-Raviv, N. Association between body mass index and in-hospital outcomes: Analysis of the nationwide inpatient database. Medicine 2016, 95, e4189. [Google Scholar] [CrossRef] [PubMed]
- Forbang, N.I.; Hughes-Austin, J.M.; Allison, M.A.; Criqui, M.H. Peripheral artery disease and non-coronary atherosclerosis in Hispanics: Another paradox? Prog. Cardiovasc. Dis. 2014, 57, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Dinsa, G.D.; Goryakin, Y.; Fumagalli, E.; Suhrcke, M. Obesity and socioeconomic status in developing countries: A systematic review. Obes. Rev. 2012, 13, 1067–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S.; Fitzgerald, L. Indigenous obesity in the news: A media analysis of news representation of obesity in Australia’s Indigenous population. BMC Obes. 2016, 3, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, Y.; Thompson, C.; Kaambwa, B.; Shahi, R.; Miller, M. Validity of the Malnutrition Universal Screening Tool (MUST) in Australian hospitalized acutely unwell elderly patients. Asia Pac. J. Clin. Nutr. 2017, 26, 994–1000. [Google Scholar] [CrossRef]
- McNeish, D. Estimation Methods for Mixed Logistic Models with Few Clusters. Multivar. Behav. Res. 2016, 51, 790–804. [Google Scholar] [CrossRef]
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22, s176–s185. [Google Scholar]
- Austin, P.C. A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications. Int. Stat. Rev. 2017, 85, 185–203. [Google Scholar] [CrossRef]
- Adair, T.; Lopez, A.D. The role of overweight and obesity in adverse cardiovascular disease mortality trends: An analysis of multiple cause of death data from Australia and the USA. BMC Med. 2020, 18, 199. [Google Scholar] [CrossRef]
- King, P.; Mortensen, E.M.; Bollinger, M.; Restrepo, M.I.; Copeland, L.A.; Pugh, M.J.; Nakashima, B.; Anzueto, A.; Hitchcock Noël, P. Impact of obesity on outcomes for patients hospitalised with pneumonia. Eur. Respir. J. 2013, 41, 929–934. [Google Scholar] [CrossRef] [Green Version]
- Harris, C.M.; Abougergi, M.S.; Wright, S. Clinical outcomes among morbidly obese patients hospitalized with diabetic foot complications. Clin. Obes. 2019, 9, e12285. [Google Scholar] [CrossRef] [Green Version]
- Terada, T.; Johnson, J.A.; Norris, C.; Padwal, R.; Qiu, W.; Sharma, A.M.; Janzen, W.; Forhan, M. Severe Obesity Is Associated with Increased Risk of Early Complications and Extended Length of Stay Following Coronary Artery Bypass Grafting Surgery. J. Am. Heart Assoc. 2016, 5, e003282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parsons, P.E.; Eisner, M.D.; Thompson, B.T.; Matthay, M.A.; Ancukiewicz, M.; Bernard, G.R.; Wheeler, A.P. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit. Care Med. 2005, 33, 1–6. [Google Scholar] [CrossRef]
- Ware, L.B.; Matthay, M.A.; Parsons, P.E.; Thompson, B.T.; Januzzi, J.L.; Eisner, M.D. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit. Care Med. 2007, 35, 1821–1828. [Google Scholar] [CrossRef] [PubMed]
- McClintock, D.; Zhuo, H.; Wickersham, N.; Matthay, M.A.; Ware, L.B. Biomarkers of inflammation, coagulation and fibrinolysis predict mortality in acute lung injury. Crit. Care 2008, 12, R41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dossett, L.A.; Dageforde, L.A.; Swenson, B.R.; Metzger, R.; Bonatti, H.; Sawyer, R.G.; May, A.K. Obesity and site-specific nosocomial infection risk in the intensive care unit. Surg. Infect. 2009, 10, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Anaya, D.A.; Dellinger, E.P. The obese surgical patient: A susceptible host for infection. Surg. Infect. 2006, 7, 473–480. [Google Scholar] [CrossRef]
- Doyle, S.L.; Lysaght, J.; Reynolds, J.V. Obesity and post-operative complications in patients undergoing non-bariatric surgery. Obes. Rev. 2010, 11, 875–886. [Google Scholar] [CrossRef]
- Viasus, D.; Paño-Pardo, J.R.; Pachón, J.; Campins, A.; López-Medrano, F.; Villoslada, A.; Fariñas, M.C.; Moreno, A.; Rodríguez-Baño, J.; Oteo, J.A.; et al. Factors associated with severe disease in hospitalized adults with pandemic (H1N1) 2009 in Spain. Clin. Microbiol. Infect. 2011, 17, 738–746. [Google Scholar] [CrossRef] [Green Version]
- Stefan, N.; Birkenfeld, A.L.; Schulze, M.B.; Ludwig, D.S. Obesity and impaired metabolic health in patients with COVID-19. Nat. Rev. Endocrinol. 2020, 16, 341–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrales-Medina, V.F.; Valayam, J.; Serpa, J.A.; Rueda, A.M.; Musher, D.M. The obesity paradox in community-acquired bacterial pneumonia. Int. J. Infect. Dis. 2011, 15, e54–e57. [Google Scholar] [CrossRef] [Green Version]
- Inoue, Y.; Koizumi, A.; Wada, Y.; Iso, H.; Watanabe, Y.; Date, C.; Yamamoto, A.; Kikuchi, S.; Inaba, Y.; Toyoshima, H.; et al. Risk and protective factors related to mortality from pneumonia among middleaged and elderly community residents: The JACC Study. J. Epidemiol. 2007, 17, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Park, H.S.; Kawada, T.; Kim, J.H.; Lim, D.; Hubbard, N.E.; Kwon, B.S.; Erickson, K.L.; Yu, R. Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int. J. Obes. 2006, 30, 1347–1355. [Google Scholar] [CrossRef] [Green Version]
- Stapleton, R.D.; Dixon, A.E.; Parsons, P.E.; Ware, L.B.; Suratt, B.T. The association between BMI and plasma cytokine levels in patients with acute lung injury. Chest 2010, 138, 568–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iikuni, N.; Lam, Q.L.; Lu, L.; Matarese, G.; La Cava, A. Leptin and Inflammation. Curr. Immunol. Rev. 2008, 4, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, A.; Vilariño-García, T.; Fernández-Riejos, P.; Martín-González, J.; Segura-Egea, J.J.; Sánchez-Margalet, V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 2017, 35, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Maurya, R.; Bhattacharya, P.; Dey, R.; Nakhasi, H.L. Leptin Functions in Infectious Diseases. Front. Immunol. 2018, 9, 2741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancuso, P.; Curtis, J.L.; Freeman, C.M.; Peters-Golden, M.; Weinberg, J.B.; Myers, M.G., Jr. Ablation of the leptin receptor in myeloid cells impairs pulmonary clearance of Streptococcus pneumoniae and alveolar macrophage bactericidal function. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 315, L78–L86. [Google Scholar] [CrossRef] [Green Version]
- Dennis, D.M.; Carter, V.; Trevenen, M.; Tyler, J.; Perrella, L.; Lori, E.; Cooper, I. Do acute hospitalised patients in Australia have a different body mass index to the general Australian population: A point prevalence study? Aust. Health Rev. 2018, 42, 121–129. [Google Scholar] [CrossRef]
BMI (kg/m2) | Normal BMI BMI 18.5–24.9 | Overweight BMI 25–29.9 | Obese Class 1 BMI 30–34.9 | Obese Class 2 BMI 35–35.9 | Obese Class 3 BMI > 40 |
---|---|---|---|---|---|
n = 16,579 | 5731 | 5297 | 3136 | 1411 | 1004 |
% | 34.6 | 31.9 | 18.9 | 8.5 | 6.1 |
Variable | Normal/Overweight | Obese (Obesity Class 1 and 2) | Morbidly Obese (Obesity Class III) | p Value |
---|---|---|---|---|
Number of subjects (%) | n = 11,028 (66.5) | n = 4547 (27.4) | n = 1004 (6.1) | |
Characteristics | ||||
Age in years med (IQR) | 60 (43,71) | 61 (49,70) | 56 (45,67) | <0.0001 |
Age categories (%) | ||||
18–29 30–39 40–49 50–59 60–69 70–79 | 1346 (12.2) 1030 (9.4) 1270 (11.5) 1783 (16.2) 2397 (21.7) 3202 (29.0) | 272 (5.9) 383 (8.4) 553 (12.2) 901 (19.8) 1167 (25.8) 1271 (27.9) | 71 (7.1) 81 (8.1) 193 (19.2) 230 (22.9) 255 (25.4) 174 (17.3) | <0.001 |
Charlson Index med (IQR) | 0 (0,2) | 1 (0,2) | 1 (0,2) | <0.0001 |
Gender female n (%) | 4455 (40.4) | 2073 (45.6) | 629 (62.7) | <0.001 |
Indigenous/Torres islander status n (%) | 328 (2.9) | 134 (2.9) | 43 (4.3) | 0.176 |
IRSD Quintile n (%) | ||||
Q1 (most disadvantaged) Q2 Q3 Q4 Q5 (least disadvantaged) | 2505 (23.1) 2391 (22.2) 2147 (19.8) 1844 (17.0) 1942 (17.9) | 1157 (25.8) 1105 (24.7) 866 (19.3) 717 (16.0) 634 (14.2) | 297 (30.0) 259 (26.3) 183 (18.5) 128 (12.9) 122 (12.3) | <0.001 |
BMI | Normal/Overweight | Obese (Obesity Class 1 and 2) | Morbidly Obese (Obesity Class III) | p Value |
---|---|---|---|---|
Number of subjects | n = 11,028 (66.5) | n = 4547 (27.4) | n = 1004 (6.1) | |
Outcomes | ||||
*LOS days median (IQR) | 5 (2, 11) | 5 (2, 10) | 5 (2, 12) | 0.030 |
LOS n (%) | ||||
≤2 days 3–14 days 15–28 days >28 days | 3276 (29.7) 5801 (52.6) 1185 (10.8) 766 (6.9) | 1266 (27.8) 2511 (55.2) 510 (11.3) 260 (5.7) | 259 (25.8) 556 (55.4) 119 (11.9) 70 (6.9) | 0.002 |
ICU admission rate | 1041 (9.4) | 400 (8.8) | 98 (9.8) | 0.393 |
ICU hours mean (SD) | 14.3 (103.2) | 10.2 (60.2) | 11.9 (68.4) | 0.051 |
In hospital mortality | 95 (0.90) | 41 (0.93) | 5 (0.51) | 0.205 |
No of complications mean (SD) | 0.9 (2.1) | 0.8 (2.0) | 0.9 (1.9) | 0.528 |
Readmissions within 7 days | 531 (4.8) | 196 (4.3) | 53 (5.3) | 0.271 |
Readmissions within 30 days | 1332 (12.1) | 538 (11.8) | 127 (12.7) | 0.759 |
Outcome | OR/IRR | 95% CI | p Value |
---|---|---|---|
LOS | |||
Unadjusted model | 1.04 * | 1.02–1.06 | <0.001 |
Adjusted model excluding Charlson index | 1.05 * | 1.03–1.07 | <0.001 |
Adjusted model with Charlson index | 1.04 * | 1.02–1.07 | <0.001 |
In-hospital mortality | |||
Unadjusted model | 0.57 | 0.23–1.41 | 0.224 |
Adjusted model excluding Charlson index | 0.67 | 0.27–1.67 | 0.392 |
Adjusted model with Charlson index | 0.65 | 0.26–1.62 | 0.354 |
ICU admission | |||
Unadjusted model | 1.06 | 0.86–1.32 | 0.739 |
Adjusted model excluding Charlson index | 1.08 | 0.87–1.35 | 0.493 |
Adjusted model with Charlson index | 1.06 | 0.85–1.32 | 0.584 |
ICU LOS | |||
Unadjusted model | 1.04 * | 0.83–1.30 | 0.058 |
Adjusted model excluding Charlson index | 1.05 * | 0.84–1.31 | 0.675 |
Adjusted model with Charlson index | 1.03 * | 0.82–1.30 | 0.801 |
Complications | |||
Unadjusted model | 1.00 | 0.94–1.08 | 0.793 |
Adjusted model excluding Charlson index | 1.02 | 0.95–1.09 | 0.587 |
Adjusted model with Charlson index | 1.00 | 0.93–1.07 | 0.996 |
30 day readmission | |||
Unadjusted model | 1.06 | 0.87–1.29 | 0.571 |
Adjusted model excluding Charlson index | 1.04 | 0.86–1.27 | 0.674 |
Adjusted model with Charlson index | 1.02 | 0.83–1.25 | 0.818 |
Outcome | OR/IRR | 95% CI | p Value |
---|---|---|---|
LOS | |||
Unadjusted model | 1.09 * | 1.07–1.12 | <0.001 |
Adjusted model excluding Charlson index | 1.14 * | 1.11–1.16 | <0.001 |
Adjusted model with Charlson index | 1.13 * | 1.11–1.16 | <0.001 |
In-hospital mortality | |||
Unadjusted model | 0.55 | 0.22–1.40 | 0.208 |
Adjusted model excluding Charlson index | 0.67 | 0.26–1.70 | 0.395 |
Adjusted model with Charlson index | 0.66 | 0.26–1.62 | 0.354 |
ICU admission | |||
Unadjusted model | 1.12 | 0.96–1.22 | 0.208 |
Adjusted model excluding Charlson index | 1.16 | 0.91–1.47 | 0.226 |
Adjusted model with Charlson index | 1.15 | 0.91–1.46 | 0.251 |
ICU LOS | |||
Unadjusted model | 1.12 * | 0.89–1.41 | 0.334 |
Adjusted model excluding Charlson index | 1.16 * | 0.91–1.47 | 0.226 |
Adjusted model with Charlson index | 1.15 * | 0.91–1.46 | 0.251 |
Complications | |||
Unadjusted model | 1.05 | 1.01–1.09 | 0.010 |
Adjusted model excluding Charlson index | 1.10 | 1.02–1.19 | 0.012 |
Adjusted model with Charlson index | 1.09 | 1.02–1.18 | 0.017 |
30 day readmission | |||
Unadjusted model | 1.08 | 0.88–1.34 | 0.437 |
Adjusted model excluding Charlson index | 1.09 | 0.88–1.34 | 0.416 |
Adjusted model with Charlson index | 1.08 | 0.88–1.33 | 0.465 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusco, K.; Thompson, C.; Woodman, R.; Horwood, C.; Hakendorf, P.; Sharma, Y. The Impact of Morbid Obesity on the Health Outcomes of Hospital Inpatients: An Observational Study. J. Clin. Med. 2021, 10, 4382. https://doi.org/10.3390/jcm10194382
Fusco K, Thompson C, Woodman R, Horwood C, Hakendorf P, Sharma Y. The Impact of Morbid Obesity on the Health Outcomes of Hospital Inpatients: An Observational Study. Journal of Clinical Medicine. 2021; 10(19):4382. https://doi.org/10.3390/jcm10194382
Chicago/Turabian StyleFusco, Kellie, Campbell Thompson, Richard Woodman, Chris Horwood, Paul Hakendorf, and Yogesh Sharma. 2021. "The Impact of Morbid Obesity on the Health Outcomes of Hospital Inpatients: An Observational Study" Journal of Clinical Medicine 10, no. 19: 4382. https://doi.org/10.3390/jcm10194382
APA StyleFusco, K., Thompson, C., Woodman, R., Horwood, C., Hakendorf, P., & Sharma, Y. (2021). The Impact of Morbid Obesity on the Health Outcomes of Hospital Inpatients: An Observational Study. Journal of Clinical Medicine, 10(19), 4382. https://doi.org/10.3390/jcm10194382