Next Article in Journal
Flower and Leaf Extracts of Sambucus nigra L.: Application of Membrane Processes to Obtain Fractions with Antioxidant and Antityrosinase Properties
Next Article in Special Issue
Channelized Substrates Made from BaZr0.75Ce0.05Y0.2O3−d Proton-Conducting Ceramic Polymer Clay
Previous Article in Journal
On the Morphological Characterization Procedures of Multilayer Hydrophobic Ceramic Membranes for Membrane Distillation Operations
Previous Article in Special Issue
Thermoelectric Behavior of BaZr0.9Y0.1O3−d Proton Conducting Electrolyte
Open AccessArticle

Factors Limiting the Apparent Hydrogen Flux in Asymmetric Tubular Cercer Membranes Based on La27W3.5Mo1.5O55.5−δ and La0.87Sr0.13CrO3−δ

SINTEF Industry, Thin Film and Membrane Technology, P.O. Box 124 Blindern, NO-0314 Oslo, Norway
*
Author to whom correspondence should be addressed.
Membranes 2019, 9(10), 126; https://doi.org/10.3390/membranes9100126
Received: 30 July 2019 / Revised: 12 September 2019 / Accepted: 20 September 2019 / Published: 24 September 2019
(This article belongs to the Special Issue Ceramic Membranes for Fuel Cell Applications and Hydrogen Production )
Asymmetric tubular ceramic–ceramic (cercer) membranes based on La27W3.5Mo1.5O55.5−δ-La0.87Sr0.13CrO3−δ were fabricated by a two-step firing method making use of water-based extrusion and dip-coating. The performance of the membranes was characterized by measuring the hydrogen permeation flux and water splitting with dry and wet sweep gases, respectively. To explore the limiting factors for hydrogen and oxygen transport in the asymmetric membrane architecture, the effect of different gas flows and switching the feed and sweep sides of the membrane on the apparent hydrogen permeability was investigated. A dusty gas model was used to simulate the gas gradient inside the porous support, which was combined with Wagner diffusion calculations of the dense membrane layer to assess the overall transport across the asymmetric membrane. In addition, the stability of the membrane was investigated by means of flux measurements over a period of 400 h. View Full-Text
Keywords: hydrogen permeation; water splitting; surface kinetics; asymmetric tubular membrane; lanthanum tungstate; lanthanum chromite hydrogen permeation; water splitting; surface kinetics; asymmetric tubular membrane; lanthanum tungstate; lanthanum chromite
Show Figures

Graphical abstract

MDPI and ACS Style

Li, Z.; Polfus, J.M.; Xing, W.; Denonville, C.; Fontaine, M.-L.; Bredesen, R. Factors Limiting the Apparent Hydrogen Flux in Asymmetric Tubular Cercer Membranes Based on La27W3.5Mo1.5O55.5−δ and La0.87Sr0.13CrO3−δ. Membranes 2019, 9, 126.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop