Chemo-Ultrasonication Rehabilitation of Thin-Film Composite Ultrapure Water Membrane for Spent Dialysate Recovery
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. DEoLM Sample
2.3. Chemo-Ultrasonication-Assisted Cleaning of Dialysate DEoLM
2.4. Salt Rejection Tests
2.5. Remediation of Creatinine Contaminated Water
2.6. Creatinine Concentration and Conductivity Measurements
2.7. Physicochemical Characterization
3. Results and Discussions
3.1. Characterization
3.1.1. SEM Analysis
3.1.2. EDX Analysis
3.1.3. FTIR Analysis
3.2. Performance of Chemo-Sonication-Assisted Cleaning of EoL
3.2.1. Conductivity Removal Using Chemo-Sonication RDEoLM
3.2.2. Creatinine Removal from Water Using Chemo-Sonication RDEoLM
3.2.3. Comparison of Ultrasonication-Assessed RO Membrane Rehabilitation Studies
3.3. Comparison Between Sonication- and Heating-Assisted Cleaning of DREoL
3.3.1. Conductivity Removal by RDEoLM: Heating vs. Ultrasonication
3.3.2. Removal of Creatinine via DEoLM Filtration: Heating vs. Ultrasonication
3.4. Mechanism of Removal of Creatinine Using RDEoLM
3.5. Performance Comparison of Chemo-Sonicated and Pristine RO Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brika, B.; Omran, A.A.; Greesh, N.; Abutartour, A. Evaluating the reuse and recycling options of end-of-life reverse osmosis membranes in Tajoura desalination plant. Desalination Water Treat. 2022, 263, 45–51. [Google Scholar] [CrossRef]
- Mu’azu, N.D.; Zubair, M.; Alqahtani, H.A.; Haladu, S.A.; Manzar, M.S.; Alharthi, S.; Abdel-Naby, A.; Jagaba, A.H.; Alhamed, I.H.; Cevik, E.; et al. Polymeric membranes for sustainable closed-loop heamodialysis process water management: Recent advances and future perspectives. J. Environ. Chem. Eng. 2025, 13, 117934. [Google Scholar] [CrossRef]
- Radu, E.R.; Voicu, S.I.; Thakur, V.K. Polymeric Membranes for Biomedical Applications. Polymers 2023, 15, 619. [Google Scholar] [CrossRef]
- Lejarazu-Larrañaga, A.; Landaburu-Aguirre, J.; Senán-Salinas, J.; Ortiz, J.M.; Molina, S. Thin Film Composite Polyamide Reverse Osmosis Membrane Technology towards a Circular Economy. Membranes 2022, 12, 864. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T. Thin Film Composite and/or Thin Film Nanocomposite Hollow Fiber Membrane for Water Treatment, Pervaporation, and Gas/Vapor Separation. Polymers 2018, 10, 1051. [Google Scholar] [CrossRef] [PubMed]
- Somrani, A.; Abohelal, K.; Pontié, M. A Mini Review of Reused End-of-Life Reverse Osmosis (EoL RO) Membranes. Membranes 2025, 15, 217. [Google Scholar] [CrossRef]
- Mu’azu, N.D.; Abubakar, I.R.; Blaisi, N.I. Public acceptability of treated wastewater reuse in Saudi Arabia: Implications for water management policy. Sci. Total Environ. 2020, 721, 137659. [Google Scholar] [CrossRef] [PubMed]
- Alkhouzaam, A.; Khraisheh, M. Towards sustainable management of end-of-life membranes: Novel transformation of end of life (EoL) reverse osmosis membranes for efficient dye/salt separation. Desalination 2024, 571, 117104. [Google Scholar] [CrossRef]
- Aktij, S.A.; Taghipour, A.; Rahimpour, A.; Mollahosseini, A.; Tiraferri, A. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics 2020, 108, 106228. [Google Scholar] [CrossRef]
- Li, Y.-S.; Shi, L.-C.; Gao, X.-F.; Huang, J.-G. Cleaning effects of oxalic acid under ultrasound to the used reverse osmosis membranes with an online cleaning and monitoring system. Desalination 2016, 390, 62–71. [Google Scholar] [CrossRef]
- Morales, N.; Ossandón, G.; Rivera, D.; Medina, V.; Poblete, R.; Chacana-Olivares, J. Recycling end-of-life reverse osmosis membranes: A combined sodium hypochlorite and ultrasonication treatment approach. J. Water Process. Eng. 2025, 75, 107957. [Google Scholar] [CrossRef]
- Cai, M.; Zhao, S.; Liang, H. Mechanisms for the enhancement of ultrafiltration and membrane cleaning by different ultrasonic frequencies. Desalination 2010, 263, 133–138. [Google Scholar] [CrossRef]
- Muthukumaran, S.; Kentish, S.; Lalchandani, S.; Ashokkumar, M.; Mawson, R.; Stevens, G.W.; Grieser, F. The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrason. Sonochem. 2005, 12, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Low, Z.L.; Low, D.Y.S.; Tang, S.Y.; Manickam, S.; Tan, K.W.; Ban, Z.H. Ultrasonic cavitation: An effective cleaner and greener intensification technology in the extraction and surface modification of nanocellulose. Ultrason. Sonochem. 2022, 90, 106176. [Google Scholar] [CrossRef]
- Thombre, N.V.; Gadhekar, A.P.; Patwardhan, A.V.; Gogate, P.R. Ultrasound induced cleaning of polymeric nanofiltration membranes. Ultrason. Sonochem. 2020, 62, 104891. [Google Scholar] [CrossRef]
- Idris, A.; Omar, R.; Idris, A. Ultrasonication effects on ultrafiltration membrane cleaning and fouling mitigation. Int. J. Adv. Chem. Eng. Biolog. Sci. 2016, 3, 151. [Google Scholar] [CrossRef]
- Gul, A.; Hruza, J.; Dvorak, L.; Yalcinkaya, F. Chemical Cleaning Process of Polymeric Nanofibrous Membranes. Polymers 2022, 14, 1102. [Google Scholar] [CrossRef]
- Mu’azu, N.D.; AlAmri, A.H.; Alhamed, I.H.; Zubair, M.; Manzar, M.S.; Nawaz, M. Repurposing of End-of-Life Dialysate Production Polymeric Membrane for Achieving Sustainable Hemodialysis Process Water Management. Polymers 2025, 17, 2922. [Google Scholar] [CrossRef]
- Oyekunle, D.T.; Lee, J.; Wang, C.; Chen, Y.; Jang, J.; Choi, S.; Moment, A.J. Surface modification of membrane substrates for nanofiltration-based removal of essential and energy-critical metals from industrial wastewater. Surf. Interfaces 2025, 73, 107486. [Google Scholar] [CrossRef]
- Malczewska, B.; Żak, A. Structural Changes and Operational Deterioration of the Uf Polyethersulfone (Pes) Membrane Due to Chemical Cleaning. Sci. Rep. 2019, 9, 422. [Google Scholar] [CrossRef]
- Khan, I.A.; Lee, Y.S.; Kim, J.-O. Chemically enhanced pretreatment (CEPT) to reduce irreversible fouling during the clean-in-place process for membranes operating under constant flux and constant pressure filtration. Desalination 2023, 549, 116313. [Google Scholar] [CrossRef]
- Chheang, M.; Hongprasith, N.; Ratanatawanate, C.; Lohwacharin, J. Effects of Chemical Cleaning on the Ageing of Polyvinylidene Fluoride Microfiltration and Ultrafiltration Membranes Fouled with Organic and Inorganic Matter. Membranes 2022, 12, 280. [Google Scholar] [CrossRef] [PubMed]
- Jeong, C.; Kim, E.; Han, S. Evaluation of Ultrasonic Cleaning Characteristics of Filter Cloth in Filter Press Cleaning System. Processes 2025, 13, 1574. [Google Scholar] [CrossRef]
- Chen, X.; Li, T.; Dou, X.; Meng, L.; Xu, S. Reverse Osmosis Membrane Combined with Ultrasonic Cleaning for Flue Gas Desulfurization Wastewater Treatment. Water 2022, 14, 875. [Google Scholar] [CrossRef]
- Kim, C.; Lee, C.; Kim, S.W.; Kim, C.S.; Kim, I.S. Performance Evaluation and Fouling Propensity of Forward Osmosis (FO) Membrane for Reuse of Spent Dialysate. Membranes 2020, 10, 438. [Google Scholar] [CrossRef] [PubMed]
- Khoo, Y.S.; Lau, W.J.; Hasan, S.W.; Salleh, W.N.W.; Ismail, A.F. New approach of recycling end-of-life reverse osmosis membranes via sonication for microfiltration process. J. Environ. Chem. Eng. 2021, 9, 106731. [Google Scholar] [CrossRef]
- Park, K.-B.; Choi, C.; Yu, H.-W.; Chae, S.-R.; Kim, I.S. Optimization of chemical cleaning for reverse osmosis membranes with organic fouling using statistical design tools. Environ. Eng. Res. 2018, 23, 474–484. [Google Scholar] [CrossRef]
- An, S.-A.; Cho, S.-M.; Woo, Y.C.; Kim, H.-S. Temperature-Dependent Performance of Citric Acid and EDTA Cleaning Sequences in Fouled RO Membranes. Desalination Water Treat. 2025, 323, 101269. [Google Scholar] [CrossRef]
- Ochando-Pulido, J.; Ortega, V.; Martínez-Ferez, A. On the cleaning procedure of a hydrophilic reverse osmosis membrane fouled by secondary-treated olive mill wastewater. Chem. Eng. J. 2015, 260, 142–151. [Google Scholar] [CrossRef]
- Ang, W.S.; Tiraferri, A.; Chen, K.L.; Elimelech, M. Fouling and cleaning of RO membranes fouled by mixtures of organic foulants simulating wastewater effluent. J. Membr. Sci. 2011, 376, 196–206. [Google Scholar] [CrossRef]
- Garcia-Fayos, B.; Arnal, J.; Gimenez, A.; Alvarez-Blanco, S.; Sancho, M. Static cleaning tests as the first step to optimize RO membranes cleaning procedure. Desalination Water Treat. 2015, 55, 3380–3390. [Google Scholar] [CrossRef]
- Masse, L.; Puig-Bargués, J.; Mondor, M.; Deschênes, L.; Talbot, G. Efficiency of EDTA, SDS and NaOH solutions to clean RO membranes processing swine wastewater. Sep. Sci. Technol. 2015, 50, 2509–2517. [Google Scholar] [CrossRef]
- Jung, M.; Yaqub, M.; Lee, W. Optimization of chemical cleaning of discarded reverse osmosis membranes for reuse. Membr. Water Treat. 2021, 12, 1. [Google Scholar] [CrossRef]
- Suhalim, N.S.; Kasim, N.; Mahmoudi, E.; Shamsudin, I.J.; Mohammad, A.W.; Zuki, F.M.; Jamari, N.L.-A. Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview. Nanomaterials 2022, 12, 437. [Google Scholar] [CrossRef]
- Park, S.; Liu, X.; Li, T.; Livingston, J.L.; Zhang, J.; Tong, T. Protein-Decorated Reverse Osmosis Membranes with High Gypsum Scaling Resistance. ACS Environ. Au 2024, 4, 333–343. [Google Scholar] [CrossRef]
- Mardiyana, L.; Suhud, K.; Raharjo, Y. Chitosan-starch cross-linked citric acid as adsorptive hemodialysis membrane. Mater. Today Proc. 2022, 65, 2986–2991. [Google Scholar] [CrossRef]
- De Pascale, M.; De Angelis, M.G.; Boi, C. Mixed matrix membranes adsorbers (MMMAs) for the removal of uremic toxins from dialysate. Membranes 2022, 12, 203. [Google Scholar] [CrossRef]
- Abidin, M.N.Z.; Goh, P.S.; Said, N.; Ismail, A.F.; Othman, M.H.D.; Hasbullah, H.; Abdullah, M.S.; Ng, B.C.; Kadir, S.H.S.A.; Kamal, F.; et al. Co-adsorptive removal of creatinine and urea by a three-component dual-layer hollow fiber membrane. ACS Appl. Mater. Interfaces 2020, 12, 33276–33287. [Google Scholar] [CrossRef]
- Islam, S.; Mirzalisa, M.; Raharjo, Y.; Widiastuti, N.; Wibisono, Y. Biomass-based mixed matrix membrane adsorbers for removal of creatinine in dialysate fluid. S. Afr. J. Chem. Eng. 2024, 48, 354–365. [Google Scholar] [CrossRef]







| # | Membrane Type/Material | Fouling Type/Feed | Cleaning Method | Cleaning Agents | Rejection (Targeted Compound/Solute, %) | Performance (Flux/Permeance + Recovery) | Reference |
|---|---|---|---|---|---|---|---|
| 1 | Polyamide RO (TM720-370 and BW30-400, EoL) | Mixed inorganic/organic (Fe, CaCO3, silicate + organics) | Oxalic acid + Ultrasonication50 kHz, 10 min @ 43 °C (after 60 min water) | 0.2% Oxalic acid (pH 2.5) | Fe3+ / CaCO3 / silicate organics 91% | Flux: 55 L m−2 h−1, Permeance: 2.1 L m−2 h−1 bar−1 | [10] |
| 2 | Hydranautics SWC6-LD polyamide TFC (EoL RO) | Mixed organic + inorganic (seawater) | NaOCl oxidation | 5% NaOCl | NaCl pre 47%, NaCl post 10% | Flux: 40–80 L m−2 h−1, Permeance: 6.9 L m−2 h−1 bar−1 | [11] |
| 3 | Hydranautics SWC6-LD polyamide TFC (EoL RO) | Mixed organic + inorganic (seawater) | NaOCl + Ultrasonication40 kHz, 208 × 103 ppm·h intensity | 5% NaOCl | NaCl pre 17%, NaCl post 5% | Flux: 50–115 L m−2 h−1, Permeance: 9.05 L m−2 h−1 bar−1 | [11] |
| 4 | Polyethersulfone (PES) UF (30 kDa) | Dextran gel layer | 28–100 kHz, 20 min @ 0.8 bar | DI water | Dextran > 95% | Flux: L m−2 h−1 | Permeance: ≈4.5 @ 28 kHz L m−2 h−1 bar−1 | [12] |
| 5 | Polysulfone UF (30 kDa, whey fouled) | Proteinaceous (dairy fouling) | NaOH + SDS + Ultrasonic 50 kHz, 10 min @ 25–55 °C, 55 kPa | 0.1 M NaOH + 15 mM SDS | Flux: nan (91% recovery) L m−2 h−1 | Permeance: 4.8 @ 55 °C L m−2 h−1 bar−1 | [13] | |
| 6 | Hollow fiber UF (EoL activated sludge) | Biological + colloidal cake | Ultrasonic 28 kHz, 60 W, 10–15 min @ 30 kPa TMP ± NaOH | 1 M NaOH/DI water | Flux: nan (57% recovery) L m−2 h−1 | Permeance: 3.8–4.5 L m−2 h−1 bar−1 | [16] | |
| 7 | Polyamide NF (flat sheet, 14.6 cm2) | Dyes (DB155, Blue150) + petroleum effluent | Ultrasonic cleaning24 kHz, 135 W, 3 min | DI water | Dyes (DB155, Blue150) 99% | Flux: 47 L m−2 h−1, Permeance: 2 L m−2 h−1 bar−1 | [15] |
| 8 | Polyamide NF | Synthetic petroleum effluent | 24 kHz, 135 W, 4 min | 1 M NaOH + US | Dyes (DB155, Blue150) 99% | Flux: 52 L m−2 h−1, Permeance: 2.3 L m−2 h−1 bar−1 | [15] |
| 9 | Vontron HP18122-50 (RO, FGD WW) | Mixed inorganics (SO42−, Cl−, Ca2+, Mg2+, NH4+) | Ultrasonic cleaning (physical) 25 kHz, 3.1 W cm−2, 10 min @ 0.5 MPa | - | NaCl pre 94–95%, NaCl post 96–97% | Flux: 34.6–41.1 L m−2 h−1, Permeance: 2.3 L m−2 h−1 bar−1 | [24] |
| 10 | End-of-Life RO (TFC-PA/PSf) | Brackish water fouling | Ultrasonication (15 min, 40 kHz) | 5000 mg/L KmnO4 | NaCl rejection ≈ 1.52% | Water flux 70.68 L·m−2·h−1·bar−1 Permeance 8–12 L/m 2.h.bar | [26] |
| 11 | Toray TM820E (EoL WW reclamation) | Organic + biofilm + colloidal | Chemical cleaning (30–40 °C, 30 min each stage) | NaOH + citric acid + EDTA | Organic + colloidal solutes 98% | Flux: 45 L m−2 h−1, Permeance: 1.62 L m−2 h−1 bar−1 | [27] |
| 12 | TFC dialysate RO membrane | Mixed organic + inorganic + proteinaceous | CA + SLS + Heat + Ultrasonication 45 kHz, 30 min, 45 °C, 120 W | 1:1 Citric acid + SLS (0.1 M each) | Conductivity 93.56%, Creatinine 96.83% | Flux: 113.48 / 108.75 L m−2 h−1, Permeance: 1.70 / 6.31 L m−2 h−1 bar−1 | Present study |
| 13 | TFC dialysate RO membrane | Mixed organic + inorganic + proteinaceous | CA + Heat + Ultrasonication 45 kHz, 30 min, 45 °C, 120 W | Citric acid (0.1 M) | Conductivity 87.04% | Flux: 96.45 L m−2 h−1, Permeance: 1.42 L m−2 h−1 bar−1 | Present study |
| 14 | TFC dialysate RO membrane | Mixed organic + inorganic + proteinaceous | SLS + Heat + Ultrasonication 45 kHz, 30 min, 45 °C, 120 W | SLS (0.1 M) | Conductivity 90.69% | Flux: 101.23 L m−2 h−1, Permeance: 1.52 L m−2 h−1 bar−1 | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu’azu, N.D.; Zubair, M.; Manzar, M.S.; Alamri, A.H.; Alhamed, I.H.; Al Alawi, A.; Nawaz, M. Chemo-Ultrasonication Rehabilitation of Thin-Film Composite Ultrapure Water Membrane for Spent Dialysate Recovery. Membranes 2025, 15, 340. https://doi.org/10.3390/membranes15110340
Mu’azu ND, Zubair M, Manzar MS, Alamri AH, Alhamed IH, Al Alawi A, Nawaz M. Chemo-Ultrasonication Rehabilitation of Thin-Film Composite Ultrapure Water Membrane for Spent Dialysate Recovery. Membranes. 2025; 15(11):340. https://doi.org/10.3390/membranes15110340
Chicago/Turabian StyleMu’azu, Nuhu Dalhat, Mukarram Zubair, Mohammad Saood Manzar, Aesha H. Alamri, Ishraq H. Alhamed, Asaad Al Alawi, and Muhammad Nawaz. 2025. "Chemo-Ultrasonication Rehabilitation of Thin-Film Composite Ultrapure Water Membrane for Spent Dialysate Recovery" Membranes 15, no. 11: 340. https://doi.org/10.3390/membranes15110340
APA StyleMu’azu, N. D., Zubair, M., Manzar, M. S., Alamri, A. H., Alhamed, I. H., Al Alawi, A., & Nawaz, M. (2025). Chemo-Ultrasonication Rehabilitation of Thin-Film Composite Ultrapure Water Membrane for Spent Dialysate Recovery. Membranes, 15(11), 340. https://doi.org/10.3390/membranes15110340

