Sensitivity and Stability Study of Test Conditions for a 1 kW Proton Exchange Membrane Fuel Cell Stack
Abstract
:1. Introduction
2. Experimental
2.1. Pressure Distribution Testing at Different Positions of Fuel Cell Stack
2.2. Performance Testing of Fuel Cell Stack under Different Pressing Forces
2.3. Stack Performance Sensitivity Optimization Testing
3. Results and Discussion
3.1. Analysis of Pressure Distribution Test Results at Different Positions
3.2. Analysis of Stack Performance Test Results for Different Pressures
3.3. Analysis of Stack Test Results of Test Condition Sensitivity
- (1)
- Sensitivity analysis of the stack performance at 0.30 A cm−2
- (2)
- Sensitivity analysis of the stack performance at 0.70 A cm−2
- (3)
- Sensitivity analysis of the stack performance at 1.20 A cm−2
- (4)
- Sensitivity analysis of the stack performance at 1.60 A cm−2
- (5)
- Summary of optimal test conditions for the stack
3.4. Stability Verification of Stack under the Optimal Test Conditions
4. Conclusions
- (1)
- Under the same pressure conditions, the interface forces remain consistent with no significant deviations. As the pressure force increases, the pressure value at each position trends upwards, though the increase is relatively modest. At the same current density, the average voltage of the cell initially increases with increasing pressure, but eventually decreases due to excessive pressure. The optimal assembly force for the experimental stack is determined to be 43 kN + 1 N∙m.
- (2)
- At low current densities, contact resistance has a greater impact on stack performance compared to gas transmission, and contact resistance decreases significantly with increasing pressure force. At high current densities, increasing pressure force weakens gas transfer ability, leading to a slight decrease in stack performance. The internal resistance of the stack, as indicated by the HFR, decreases with increasing pressure force, while the HFR itself increases with higher current density.
- (3)
- The orthogonal method was employed to optimize the sensitivity of test conditions, leading to the determination of the optimal test parameters for each current density of the experimental stack. Stability testing of the stack’s output voltage and internal impedance was conducted using these optimized conditions to assess the sensitivity of the output results. It was observed that the voltage fluctuation between individual cells was within ±2 mV (decreasing), and the internal resistance, as indicated by the HFR, remained stable at 0.5 ± 0.02 mΩ. These findings demonstrate that the sensitivity analysis ensures stable stack performance across different current densities.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rico-Zavala, A.; Pineda-Delgado, J.L.; Carbone, A.; Saccà, A.; Passalacqua, E.; Gurrola, M.P.; Alvarez, A.; Rivas, S.; Ledesma-García, J.; Arriaga, L.G. Composite Sulfonated Polyether-Ether Ketone Membranes with SBA-15 for Electrochemical Energy Systems. Materials 2020, 13, 1570. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Chen, H.; Guo, H.; Gao, Z.; Ye, F. Experimental study on the evolution and distribution of interface heat characteristics in proton exchange membrane fuel cells with orientational channels. J. Power Sources 2024, 623, 235357. [Google Scholar] [CrossRef]
- Mark, K.D. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [Google Scholar]
- Wei, Y.; Lei, H.; Liu, Y.; Wang, L.; Zhu, L.; Zhang, X.; Yadavalli, G.; Ahring, G.; Chen, S. Renewable Hydrogen Produced from Different Renewable Feedstock by Aqueous-Phase Reforming Process. J. Sustain. Bioenergy Syst. 2014, 4, 113–127. [Google Scholar] [CrossRef]
- Liang, P.; Qiu, D.; Peng, L.; Yi, P.; Lai, X.; Ni, J. Structure failure of the sealing in the assembly process for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2017, 42, 10217–10227. [Google Scholar] [CrossRef]
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, W.; Han, X.; Zhang, Y.; Ma, G. A systematic review for structure optimization and clamping load design of large proton exchange membrane fuel cell stack. J. Power Sources 2020, 476, 228724. [Google Scholar] [CrossRef]
- Fan, J.; Chen, M.; Zhao, Z.; Zhang, Z.; Ye, S.; Xu, S.; Wang, H.; Li, H. Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells. Nat. Energy 2021, 6, 475–486. [Google Scholar] [CrossRef]
- Lee, S.; Hsu, C.; Huang, C. Analyses of the fuel cell stack assembly pressure. J. Power Sources 2005, 145, 353–361. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, M.; Luo, X.; Li, H.; Luo, L.; Cheng, X.; Yan, X.; Shen, S. Current status of the research on key technologies of vehicle fuel cell stack. J. Automot. Saf. Energy 2022, 13, 1–28. [Google Scholar]
- Yan, Q.; Zhang, W.; Zhang, P.C.; Yu, D. Design of 8 kW air cooling PEM fuel cell stack at ambient pressure and temperature conditions. Chin. J. Power Sources 2014, 38, 647–650. [Google Scholar]
- Ge, J.; Higier, A.; Liu, H. Effect of gas diffusion layer compression on PEM fuel cell performance. J. Power Sources 2006, 159, 922–927. [Google Scholar] [CrossRef]
- Yan, X.; Lin, C.; Zheng, Z.; Chen, J.; Wei, G.; Zhang, J. Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression. Appl. Energy 2020, 258, 114073. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, T.; Qu, Y.; Mi, X.; Cui., X.; Zhang, K. The key technologies of fuel cell stack design and development. Automot. Dig. 2020, 10, 57–62. [Google Scholar]
- Qiu, D.; Peng, L.; Yi, P.; Lehnert, W.; Lai, X. Review on proton exchange membrane fuel cell stack assembly: Quality evaluation, assembly method, contact behavior and process design. Renew. Sus. Energy Rev. 2021, 152, 111660. [Google Scholar] [CrossRef]
- Toghyani, S.; Nafchi, F.; Afshari, E.; Hasanpour, K.; Baniasadi, E.; Atyabi, S. Thermal and electrochemical performance analysis of a proton exchange membrane fuel cell under assembly pressure on gas diffusion layer. Int. J. Hydrogen Energy 2018, 43, 4534–4545. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C. Effect of Clamping Load on the Performance of Proton Exchange Membrane Fuel Cell Stack and Its Optimization Design: A Review of Modeling and Experimental Research. ASME. J. Fuel Cell Sci. Technol. 2014, 11, 020801. [Google Scholar] [CrossRef]
- Araya, S.; Andreasen, S.; Kar, S. Parametric Sensitivity Tests—European Polymer Electrolyte Membrane Fuel Cell Stack Test Procedures. ASME. J. Fuel Cell Sci. Technol. 2014, 11, 061007. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, R.; Techer, L.; Cui, X. Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution. Energy 2016, 115, 550–560. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Y.; Ji, X.; Liu, F.; Hao, D. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells. J. Jilin Univ. (Eng. Technol. Ed.) 2022, 52, 1971–1981. [Google Scholar]
- Liao, X.; Liu, K.; Le, J.; Zhu, S.; Huai, Q.; Li, B.; Zhang, Y. Extended affine arithmetic-based global sensitivity analysis for power flow with uncertainties. Int. J. Electr. Power Energy Syst. 2020, 115, 105440. [Google Scholar] [CrossRef]
Current Density (A cm−2) | Pressure (A/C, kPa) | RHa (%) | RHc (%) | Anode Stoich. | Cathode Stoich. | Orthogonal Table | Supplementary Pressure Testing (A/C, kPa) |
---|---|---|---|---|---|---|---|
0.30 | 60/50 | 20 | 30 | 1.8 | 3 | L4(23) | 80/70 |
30 | 40 | 4 | |||||
0.70 | 85/70 | 20 | 30 | 1.5 | 2 | L9(34) | 100/80 |
30 | 40 | 2.5 | |||||
40 | 50 | 3 | |||||
1.20 | 100/80 | 20 | 30 | 1.5 | 2 | L9(34) | 120/100 |
30 | 40 | 2.5 | |||||
40 | 50 | 3 | |||||
1.60 | 120/100 | 20 | 30 | 1.5 | 1.8 | L9(34) | 140/120 |
30 | 40 | 2 | |||||
40 | 50 | 2.2 |
0.30 A cm−2: | |||||||
No. | Pressure(a/c/Coolant, kPa) | Stoich.(a/c) | Inlet Water Temperature (°C) | RHa (%) | RHc (%) | Flow Rate of Cooling Water (L min−1) | Run Time (min) |
1 | 60/50/30 | 1.8/3 | 65 | 20 | 30 | 3 | 30 |
2 | 60/50/30 | 1.8/4 | 65 | 20 | 40 | 30 | |
3 | 60/50/30 | 1.8/4 | 65 | 30 | 30 | 30 | |
4 | 60/50/30 | 1.8/3 | 65 | 30 | 40 | 30 | |
5 | 80/70/60 | 1.8/3 | 65 | 30 | 40 | 5 | 30 |
0.70 A cm−2: | |||||||
No. | Pressure(a/c/Coolant, kPa) | Stoich.(a/c) | Inlet Water Temperature (°C) | RHa (%) | RHc (%) | Flow Rate of Cooling Water (L min−1) | Run Time (min) |
6 | 85/70/60 | 1.5/2 | 65 | 20 | 30 | 5 | 30 |
7 | 85/70/60 | 1.5/2.5 | 68 | 20 | 40 | 30 | |
8 | 85/70/60 | 1.5/3 | 72 | 20 | 50 | 30 | |
9 | 85/70/60 | 1.5/2.5 | 72 | 30 | 30 | 30 | |
10 | 85/70/60 | 1.5/3 | 65 | 30 | 40 | 30 | |
11 | 85/70/60 | 1.5/2 | 68 | 30 | 50 | 30 | |
12 | 85/70/60 | 1.5/3 | 68 | 40 | 30 | 30 | |
13 | 85/70/60 | 1.5/2 | 72 | 40 | 40 | 30 | |
14 | 85/70/60 | 1.5/2.5 | 65 | 40 | 50 | 30 | |
15 | 100/80/70 | 1.5/2.5 | 65 | 40 | 50 | 5.3 | 30 |
1.20 A cm−2: | |||||||
No. | Pressure(a/c/Coolant, kPa) | Stoich.(a/c) | Inlet Water Temperature (°C) | RHa (%) | RHc (%) | Flow Rate of Cooling Water (L min−1) | Run Time (min) |
16 | 100/80/70 | 1.5/2 | 68 | 20 | 30 | 5.3 | 30 |
17 | 100/80/70 | 1.5/2.5 | 70 | 20 | 40 | 30 | |
18 | 100/80/70 | 1.5/3 | 72 | 20 | 50 | 30 | |
19 | 100/80/70 | 1.5/2.5 | 72 | 30 | 30 | 30 | |
20 | 100/80/70 | 1.5/3 | 68 | 30 | 40 | 30 | |
21 | 100/80/70 | 1.5/2 | 70 | 30 | 50 | 30 | |
22 | 100/80/70 | 1.5/3 | 70 | 40 | 30 | 30 | |
23 | 100/80/70 | 1.5/2 | 72 | 40 | 40 | 30 | |
24 | 100/80/70 | 1.5/2.5 | 68 | 40 | 50 | 30 | |
25 | 120/100/80 | 1.5/2 | 70 | 30 | 50 | 6 | 30 |
1.60 A cm−2: | |||||||
No. | Pressure (a/c/Coolant, kPa) | Stoich.(a/c) | Inlet Water Temperature (°C) | RHa (%) | RHc (%) | Flow Rate of Cooling Water (L min−1) | Run Time (min) |
26 | 120/100/70 | 1.5/1.8 | 68 | 20 | 30 | 6 | 30 |
27 | 120/100/70 | 1.5/2 | 70 | 20 | 40 | 30 | |
28 | 120/100/70 | 1.5/2.2 | 72 | 20 | 50 | 30 | |
29 | 120/100/70 | 1.5/2 | 72 | 30 | 30 | 30 | |
30 | 120/100/70 | 1.5/2.2 | 68 | 30 | 40 | 30 | |
31 | 120/100/70 | 1.5/1.8 | 70 | 30 | 50 | 30 | |
32 | 120/100/70 | 1.5/2.2 | 70 | 40 | 30 | 30 | |
33 | 120/100/70 | 1.5/1.8 | 72 | 40 | 40 | 30 | |
34 | 120/100/70 | 1.5/2 | 68 | 40 | 50 | 30 | |
35 | 140/120/70 | 1.5/2 | 70 | 30 | 50 | 30 |
Pressure Force | 30 kN | 33 kN | 35 kN | 38 kN | 40 kN | 43 kN | 45 kN | 48 kN | 50 kN | |
---|---|---|---|---|---|---|---|---|---|---|
Position of Pressure Distribution Test System | ||||||||||
Position 1 | 13.24 | 13.33 | 13.42 | 13.49 | 13.56 | 13.61 | 13.71 | 13.78 | 13.72 | |
Position 2 | 13.29 | 13.34 | 13.43 | 13.53 | 13.62 | 13.67 | 13.69 | 13.73 | 13.77 | |
Position 3 | 13.47 | 13.53 | 13.56 | 13.61 | 13.64 | 13.67 | 13.77 | 13.72 | 13.76 | |
Position 4 | 13.45 | 13.52 | 13.57 | 13.62 | 13.66 | 13.69 | 13.79 | 13.74 | 13.77 | |
Position 5 | 13.24 | 13.35 | 13.42 | 13.49 | 13.56 | 13.61 | 13.74 | 13.78 | 13.78 | |
Position 6 | 13.29 | 13.37 | 13.43 | 13.53 | 13.62 | 13.67 | 13.74 | 13.78 | 13.78 |
0.30 A cm−2 | |||||||||||||
No. | Pressure (a/c/Coolant, kPa) | Stoich.(a/c) | Cooling Water Temperature (°C) | RHa (%) | RHc (%) | Water Flow Rate (L min−1) | Run Time (min) | Remark | Cold End Cell (V) | Middle Cell (V) | Hot End Cell (V) | Mean Value (V) | HFR (mΩ) |
1 | 60/50/30 | 1.8/3 | 65 | 20 | 30 | 3 | 30 | 0.790 | 0.778 | 0.777 | 0.782 | 0.691 | |
2 | 60/50/30 | 1.8/4 | 65 | 20 | 40 | 3 | 30 | 0.797 | 0.791 | 0.789 | 0.792 | 0.593 | |
3 | 60/50/30 | 1.8/4 | 65 | 30 | 30 | 3 | 30 | 0.789 | 0.787 | 0.784 | 0.787 | 0.730 | |
4 | 60/50/30 | 1.8/3 | 65 | 30 | 40 | 3 | 30 | 0.787 | 0.783 | 0.780 | 0.783 | 0.568 | |
5 | 80/70/60 | 1.8/3 | 65 | 30 | 40 | 5 | 30 | Pressure supplement experiment for 4# | 0.789 | 0.786 | 0.783 | 0.786 | 0.560 |
0.70 A cm−2 | |||||||||||||
No. | Pressure (a/c/coolant, kPa) | Stoich.(a/c) | Cooling water temperature (°C) | RHa (%) | RHc (%) | Water flow rate (L min−1) | Run time (min) | Remark | Cold end cell (V) | Middle cell (V) | Hot end cell (V) | Mean value (V) | HFR (mΩ) |
6 | 85/70/60 | 1.5/2 | 65 | 20 | 30 | 5 | 30 | 0.701 | 0.691 | 0.668 | 0.687 | 0.516 | |
7 | 85/70/60 | 1.5/2.5 | 68 | 20 | 40 | 5 | 30 | 0.703 | 0.721 | 0.708 | 0.711 | 0.527 | |
8 | 85/70/60 | 1.5/3 | 72 | 20 | 50 | 5 | 30 | 0.735 | 0.734 | 0.732 | 0.734 | 0.548 | |
9 | 85/70/60 | 1.5/2.5 | 72 | 30 | 30 | 5 | 30 | 0.734 | 0.727 | 0.726 | 0.729 | 0.570 | |
10 | 85/70/60 | 1.5/3 | 65 | 30 | 40 | 5 | 30 | 0.725 | 0.713 | 0.693 | 0.710 | 0.519 | |
11 | 85/70/60 | 1.5/2 | 68 | 30 | 50 | 5 | 30 | 0.718 | 0.716 | 0.705 | 0.713 | 0.501 | |
12 | 85/70/60 | 1.5/3 | 68 | 40 | 30 | 5 | 30 | 0.729 | 0.726 | 0.713 | 0.723 | 0.546 | |
13 | 85/70/60 | 1.5/2 | 72 | 40 | 40 | 5 | 30 | 0.727 | 0.728 | 0.726 | 0.727 | 0.517 | |
14 | 85/70/60 | 1.5/2.5 | 65 | 40 | 50 | 5 | 30 | 0.708 | 0.700 | 0.683 | 0.697 | 0.491 | |
15 | 100/80/70 | 1.5/2.5 | 65 | 40 | 50 | 5.3 | 30 | Pressure supplement experiment for 14# | 0.693 | 0.683 | 0.661 | 0.679 | 0.484 |
1.20 A cm−2 | |||||||||||||
No. | Pressure (a/c/coolant, kPa) | Stoich.(a/c) | Cooling water temperature (°C) | RHa (%) | RHc (%) | Water flow rate (L min−1) | Run time (min) | Remark | Cold end cell (V) | Middle cell (V) | Hot end cell (V) | Mean value (V) | HFR (mΩ) |
16 | 100/80/70 | 1.5/2 | 68 | 20 | 30 | 5.3 | 30 | 0.649 | 0.659 | 0.634 | 0.647 | 0.511 | |
17 | 100/80/70 | 1.5/2.5 | 70 | 20 | 40 | 5.3 | 30 | 0.674 | 0.676 | 0.673 | 0.647 | 0.522 | |
18 | 100/80/70 | 1.5/3 | 72 | 20 | 50 | 5.3 | 30 | 0.679 | 0.676 | 0.679 | 0.678 | 0.542 | |
19 | 100/80/70 | 1.5/2.5 | 72 | 30 | 30 | 5.3 | 30 | 0.670 | 0.670 | 0.669 | 0.670 | 0.554 | |
20 | 100/80/70 | 1.5/3 | 68 | 30 | 40 | 5.3 | 30 | 0.673 | 0.674 | 0.665 | 0.671 | 0.523 | |
21 | 100/80/70 | 1.5/2 | 70 | 30 | 50 | 5.3 | 30 | 0.663 | 0.670 | 0.664 | 0.666 | 0.499 | |
22 | 100/80/70 | 1.5/3 | 70 | 40 | 30 | 5.3 | 30 | 0.674 | 0.673 | 0.674 | 0.674 | 0.547 | |
23 | 100/80/70 | 1.5/2 | 72 | 40 | 40 | 5.3 | 30 | 0.667 | 0.672 | 0.665 | 0.668 | 0.510 | |
24 | 100/80/70 | 1.5/2.5 | 68 | 40 | 50 | 5.3 | 30 | 0.667 | 0.671 | 0.663 | 0.667 | 0.494 | |
25 | 120/100/80 | 1.5/2 | 70 | 30 | 50 | 6 | 30 | Pressure supplement experiment for 21# | 0.663 | 0.669 | 0.654 | 0.662 | 0.485 |
1.60 A cm−2 | |||||||||||||
No. | Pressure (a/c/coolant, kPa) | Stoich.(a/c) | Cooling water temperature (°C) | RHa (%) | RHc (%) | Water flow rate (L min−1) | Run time (min) | Remark | Cold end cell (V) | Middle cell (V) | Hot end cell (V) | Mean value (V) | HFR (mΩ) |
26 | 120/100/70 | 1.5/1.8 | 68 | 20 | 30 | 6 | 30 | 0.616 | 0.622 | 0.599 | 0.612 | 0.496 | |
27 | 120/100/70 | 1.5/2 | 70 | 20 | 40 | 6 | 30 | 0.629 | 0.635 | 0.615 | 0.626 | 0.510 | |
28 | 120/100/70 | 1.5/2.2 | 72 | 20 | 50 | 6 | 30 | 0.636 | 0.640 | 0.629 | 0.635 | 0.511 | |
29 | 120/100/70 | 1.5/2 | 72 | 30 | 30 | 6 | 30 | 0.629 | 0.635 | 0.628 | 0.631 | 0.513 | |
30 | 120/100/70 | 1.5/2.2 | 68 | 30 | 40 | 6 | 30 | 0.628 | 0.635 | 0.626 | 0.630 | 0.494 | |
31 | 120/100/70 | 1.5/1.8 | 70 | 30 | 50 | 6 | 30 | 0.615 | 0.629 | 0.611 | 0.618 | 0.491 | |
32 | 120/100/70 | 1.5/2.2 | 70 | 40 | 30 | 6 | 30 | 0.630 | 0.638 | 0.623 | 0.630 | 0.493 | |
33 | 120/100/70 | 1.5/1.8 | 72 | 40 | 40 | 6 | 30 | 0.624 | 0.634 | 0.618 | 0.625 | 0.495 | |
34 | 120/100/70 | 1.5/2 | 68 | 40 | 50 | 6 | 30 | 0.616 | 0.625 | 0.605 | 0.615 | 0.481 | |
35 | 140/120/70 | 1.5/1.8 | 70 | 30 | 50 | 6 | 30 | Pressure supplement experiment for 31# | 0.625 | 0.639 | 0.626 | 0.630 | 0.482 |
Column | 1 | 2 | 3 | |
---|---|---|---|---|
Factor | RHa | RHc | Stoich.(c) | Stack Performance (V) |
Experiment 1 | 1(20%) | 1(30%) | 1(3) | 0.782 |
Experiment 2 | 1 | 2(40%) | 2(4) | 0.792 |
Experiment 3 | 2(30%) | 1 | 2 | 0.787 |
Experiment 4 | 2 | 2 | 1 | 0.783 |
Mean value 1 | 0.787 | 0.785 | 0.783 | |
Mean value 2 | 0.785 | 0.788 | 0.790 | |
Sample Range | 0.002 | 0.003 | 0.007 |
Column | 1 | 2 | 3 | |
---|---|---|---|---|
Factor | RHa | RHc | Stoich.(c) | Standard Deviation (SD) |
Experiment 1 | 1(20%) | 1(30%) | 1(3) | 0.007 |
Experiment 2 | 1 | 2(40%) | 2(4) | 0.004 |
Experiment 3 | 2(30%) | 1 | 2 | 0.003 |
Experiment 4 | 2 | 2 | 1 | 0.004 |
Mean value 1 | 0.006 | 0.005 | 0.006 | |
Mean value 2 | 0.004 | 0.004 | 0.004 | |
Sample Range | 0.002 | 0.001 | 0.002 |
Column | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Factor | RHa | RHc | Stoich. (c) | T (Inlet Water) (°C) | Stack Performance (V) |
Experiment 6 | 1(20%) | 1(30%) | 1(2.0) | 1(65) | 0.687 |
Experiment 7 | 1 | 2(40%) | 2(2.5) | 2(68) | 0.711 |
Experiment 8 | 1 | 3(50%) | 3(3) | 3(72) | 0.734 |
Experiment 9 | 2(30%) | 1 | 2 | 3 | 0.729 |
Experiment 10 | 2 | 2 | 3 | 1 | 0.710 |
Experiment 11 | 2 | 3 | 1 | 2 | 0.713 |
Experiment 12 | 3(40%) | 1 | 3 | 2 | 0.723 |
Experiment 13 | 3 | 2 | 1 | 3 | 0.727 |
Experiment 14 | 3 | 3 | 2 | 1 | 0.697 |
Mean value 1 | 0.711 | 0.713 | 0.709 | 0.698 | |
Mean value 2 | 0.717 | 0.716 | 0.712 | 0.716 | |
Mean value 3 | 0.717 | 0.715 | 0.722 | 0.730 | |
Sample Range | 0.006 | 0.003 | 0.013 | 0.032 |
Column | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Factor | RHa | RHc | Stoich. (c) | T (Inlet Water) (°C) | Standard Deviation (SD) |
Experiment 6 | 1(20%) | 1(30%) | 1(2.0) | 1(65) | 0.017 |
Experiment 7 | 1 | 2(40%) | 2(2.5) | 2(68) | 0.009 |
Experiment 8 | 1 | 3(50%) | 3(3) | 3(72) | 0.002 |
Experiment 9 | 2(30%) | 1 | 2 | 3 | 0.004 |
Experiment 10 | 2 | 2 | 3 | 1 | 0.016 |
Experiment 11 | 2 | 3 | 1 | 2 | 0.007 |
Experiment 12 | 3(40%) | 1 | 3 | 2 | 0.009 |
Experiment 13 | 3 | 2 | 1 | 3 | 0.001 |
Experiment 14 | 3 | 3 | 2 | 1 | 0.013 |
Mean value 1 | 0.009 | 0.010 | 0.008 | 0.015 | |
Mean value 2 | 0.009 | 0.009 | 0.009 | 0.008 | |
Mean value 3 | 0.008 | 0.007 | 0.009 | 0.002 | |
Sample Range | 0.001 | 0.003 | 0.001 | 0.013 |
Column | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Factor | RHa | RHc | Stoich. (c) | T (Inlet Water) (°C) | Stack Performance (V) |
Experiment 16 | 1(20%) | 1(30%) | 1(2) | 1(68) | 0.647 |
Experiment 17 | 1 | 2(40%) | 2(2.5) | 2(70) | 0.674 |
Experiment 18 | 1 | 3(50%) | 3(3) | 3(72) | 0.678 |
Experiment 19 | 2(30%) | 1 | 2 | 3 | 0.670 |
Experiment 20 | 2 | 2 | 3 | 1 | 0.671 |
Experiment 21 | 2 | 3 | 1 | 2 | 0.666 |
Experiment 22 | 3(40%) | 1 | 3 | 2 | 0.674 |
Experiment 23 | 3 | 2 | 1 | 3 | 0.668 |
Experiment 24 | 3 | 3 | 2 | 1 | 0.667 |
Mean value 1 | 0.666 | 0.664 | 0.66 | 0.66 | 0.662 |
Mean value 2 | 0.669 | 0.671 | 0.67 | 0.67 | 0.671 |
Mean value 3 | 0.67 | 0.67 | 0.674 | 0.674 | 0.672 |
Sample Range | 0.004 | 0.007 | 0.014 | 0.014 | 0.01 |
Column | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Factor | RHa | RHc | Stoich. (c) | T (Inlet Water) (°C) | Standard Deviation (SD) |
Experiment 16 | 1(20%) | 1(30%) | 1(2) | 1(68) | 0.013 |
Experiment 17 | 1 | 2(40%) | 2(2.5) | 2(70) | 0.002 |
Experiment 18 | 1 | 3(50%) | 3(3) | 3(72) | 0.002 |
Experiment 19 | 2(30%) | 1 | 2 | 3 | 0.001 |
Experiment 20 | 2 | 2 | 3 | 1 | 0.005 |
Experiment 21 | 2 | 3 | 1 | 2 | 0.004 |
Experiment 22 | 3(40%) | 1 | 3 | 2 | 0.001 |
Experiment 23 | 3 | 2 | 1 | 3 | 0.004 |
Experiment 24 | 3 | 3 | 2 | 1 | 0.004 |
Mean value 1 | 0.006 | 0.005 | 0.007 | 0.007 | |
Mean value 2 | 0.003 | 0.004 | 0.002 | 0.002 | |
Mean value 3 | 0.003 | 0.003 | 0.003 | 0.002 | |
Sample Range | 0.003 | 0.002 | 0.005 | 0.005 |
Column | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Factor | RHa | RHc | Stoich. (c) | T (Inlet Water) (°C) | Stack Performance (V) |
Experiment 26 | 1(20%) | 1(30%) | 1(1.8) | 1(68) | 0.612 |
Experiment 27 | 1 | 2(40%) | 2(2) | 2(70) | 0.626 |
Experiment 28 | 1 | 3(50%) | 3(2.2) | 3(72) | 0.635 |
Experiment 29 | 2(30%) | 1 | 2 | 3 | 0.631 |
Experiment 30 | 2 | 2 | 3 | 1 | 0.630 |
Experiment 31 | 2 | 3 | 1 | 2 | 0.618 |
Experiment 32 | 3(40%) | 1 | 3 | 2 | 0.630 |
Experiment 33 | 3 | 2 | 1 | 3 | 0.625 |
Experiment 34 | 3 | 3 | 2 | 1 | 0.615 |
Mean value 1 | 0.624 | 0.624 | 0.618 | 0.619 | |
Mean value 2 | 0.626 | 0.627 | 0.624 | 0.625 | |
Mean value 3 | 0.623 | 0.623 | 0.632 | 0.630 | |
Sample Range | 0.003 | 0.004 | 0.014 | 0.011 |
Column | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Factor | RHa | RHc | Stoich. (c) | T (Inlet Water) (°C) | Standard Deviation (SD) |
Experiment 26 | 1(20%) | 1(30%) | 1(1.8) | 1(68) | 0.012 |
Experiment 27 | 1 | 2(40%) | 2(2) | 2(70) | 0.010 |
Experiment 28 | 1 | 3(50%) | 3(2.2) | 3(72) | 0.006 |
Experiment 29 | 2(30%) | 1 | 2 | 3 | 0.004 |
Experiment 30 | 2 | 2 | 3 | 1 | 0.005 |
Experiment 31 | 2 | 3 | 1 | 2 | 0.009 |
Experiment 32 | 3(40%) | 1 | 3 | 2 | 0.008 |
Experiment 33 | 3 | 2 | 1 | 3 | 0.008 |
Experiment 34 | 3 | 3 | 2 | 1 | 0.010 |
Mean value 1 | 0.009 | 0.008 | 0.010 | 0.009 | |
Mean value 2 | 0.006 | 0.008 | 0.008 | 0.009 | |
Mean value 3 | 0.009 | 0.008 | 0.006 | 0.006 | |
Sample Range | 0.003 | 0.000 | 0.004 | 0.003 |
Current Density (A cm−2) | Pressure (a/c, kPa) | RHa% | RHc% | Stoich(a) | Stoich(c) | T (Water Inlet) (°C) |
---|---|---|---|---|---|---|
0.30 | 60/50 | 20 | 40 | 1.8 | 4 | 65 |
0.70 | 85/70 | 40 | 40 | 1.5 | 3 | 72 |
1.20 | 100/80 | 40 | 40 | 1.5 | 3 | 72 |
1.60 | 120/100 | 30 | 40 | 1.5 | 2.2 | 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Yi, Y.; Wang, W.; Xie, M.; Yuan, Y. Sensitivity and Stability Study of Test Conditions for a 1 kW Proton Exchange Membrane Fuel Cell Stack. Membranes 2024, 14, 197. https://doi.org/10.3390/membranes14090197
Xu P, Yi Y, Wang W, Xie M, Yuan Y. Sensitivity and Stability Study of Test Conditions for a 1 kW Proton Exchange Membrane Fuel Cell Stack. Membranes. 2024; 14(9):197. https://doi.org/10.3390/membranes14090197
Chicago/Turabian StyleXu, Peng, Yingmin Yi, Weijie Wang, Meng Xie, and Yiwei Yuan. 2024. "Sensitivity and Stability Study of Test Conditions for a 1 kW Proton Exchange Membrane Fuel Cell Stack" Membranes 14, no. 9: 197. https://doi.org/10.3390/membranes14090197
APA StyleXu, P., Yi, Y., Wang, W., Xie, M., & Yuan, Y. (2024). Sensitivity and Stability Study of Test Conditions for a 1 kW Proton Exchange Membrane Fuel Cell Stack. Membranes, 14(9), 197. https://doi.org/10.3390/membranes14090197