Membrane Fouling Mitigation in MBR via the Feast–Famine Strategy to Enhance PHA Production by Activated Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Set-Up and Operation of the MBR Plant
2.2. Analytical Methods
2.3. MBR Monitoring
2.4. Membrane Fouling Analysis
3. Results and Discussions
3.1. Assessment of PHA Production in the MBR
3.2. COD Removal in the MBR
3.3. Characterization of EPS in the Bulk and Membrane Cake Layer
3.4. Evaluation of Membrane Fouling Tendency and Mechanisms
3.5. Effect of PHA and EPS Content on Membrane Fouling
4. Conclusions
- By operating an MBR lab-scale plant within a certain range of F/M (0.40–0.50 kg COD kg TSS−1 d−1) exogenous carbon was preferentially converted into intracellular compounds maximizing PHA storage and minimizing EPS production.
- Lowering the EPS content of the sludge significantly decreased the fouling tendency of the membrane. The fouling rate considerably decreased reaching values below 0.2 × 1011 m−1 h−1. Moreover, this fact contributed to irreversible cake deposition.
- A lower EPS content corresponded to an increase of the fouling removable with ordinary backwashings, which could result in less frequent extraordinary cleanings operations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akkoyunlu, B.; Daly, S.; Casey, E. Membrane bioreactors for the production of value-added products: Recent developments, challenges and perspectives. Bioresour. Technol. 2021, 341, 125793. [Google Scholar] [CrossRef] [PubMed]
- Barreto, C.M.; Garcia, H.A.; Hooijmans, C.M.; Herrera, A.; Brdjanovic, D. Assessing the performance of an MBR operated at high biomass concentrations. Int. Biodeterior. Biodegrad. 2017, 119, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Foglia, A.; Andreola, C.; Cipolletta, G.; Radini, S.; Akyol, Ç.; Eusebi, A.L.; Stanchev, P.; Katsou, E.; Fatone, F. Comparative life cycle environmental and economic assessment of anaerobic membrane bioreactor and disinfection for reclaimed water reuse in agricultural irrigation: A case study in Italy. J. Clean. Prod. 2021, 293, 126201. [Google Scholar] [CrossRef]
- Ioannou-Ttofa, L.; Foteinis, S.; Chatzisymeon, E.; Fatta-Kassinos, D. The environmental footprint of a membrane bioreactor treatment process through Life Cycle Analysis. Sci. Total Environ. 2016, 568, 306–318. [Google Scholar] [CrossRef] [Green Version]
- Burniol-Figols, A.; Pinelo, M.; Skiadas, I.V.; Gavala, H.N. Enhancing polyhydroxyalkanoate productivity with cell-retention membrane bioreactors. Biochem. Eng. J. 2020, 161, 107687. [Google Scholar] [CrossRef]
- Ahn, W.S.; Park, S.J.; Lee, S.Y. Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant escherichia coli with a highly concentrated whey solution. Appl. Environ. Microbiol. 2000, 66, 3624–3627. [Google Scholar] [CrossRef] [Green Version]
- Sabapathy, P.C.; Devaraj, S.; Meixner, K.; Anburajan, P.; Kathirvel, P.; Ravikumar, Y.; Zabed, H.M.; Qi, X. Recent developments in Polyhydroxyalkanoates (PHAs) production—A review. Bioresour. Technol. 2020, 306, 123132. [Google Scholar] [CrossRef]
- Lorini, L.; di Re, F.; Majone, M.; Valentino, F. High rate selection of PHA accumulating mixed cultures in sequencing batch reactors with uncoupled carbon and nitrogen feeding. New Biotechnol. 2020, 56, 140–148. [Google Scholar] [CrossRef]
- Corsino, S.F.; Di Trapani, D.; Traina, F.; Cruciata, I.; Scirè Calabrisotto, L.; Lopresti, F.; La Carrubba, V.; Quatrini, P.; Torregrossa, M.; Viviani, G. Integrated production of biopolymers with industrial wastewater treatment: Effects of OLR on process yields, biopolymers characteristics and mixed microbial community enrichment. J. Water Process Eng. 2022, 47, 102772. [Google Scholar] [CrossRef]
- Corsino, S.F.; Di Trapani, D.; Torregrossa, N.; Piazzese, D. Preliminary evaluation of biopolymers production by mixed microbial culture from citrus wastewater in a MBR system using respirometric techniques. J. Water Process Eng. 2021, 41, 102003. [Google Scholar] [CrossRef]
- Campo, R.; Capodici, M.; Di Bella, G.; Torregrossa, M. The role of EPS in the foaming and fouling for a MBR operated in intermittent aeration conditions. Biochem. Eng. J. 2017, 118, 41–52. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Tang, S. Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Res. 2009, 43, 2504–2512. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Di Trapani, D.; Judd, S. Fouling mechanism elucidation in membrane bioreactors by bespoke physical cleaning. Sep. Purif. Technol. 2018, 199, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Campo, R.; Corsino, S.F.; Torregrossa, M.; Di Bella, G. The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity. Sep. Purif. Technol. 2018, 195, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Cosenza, A.; Di Bella, G.; Mannina, G.; Torregrossa, M. The role of EPS in fouling and foaming phenomena for a membrane bioreactor. Bioresour. Technol. 2013, 147, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Liu, X.; Wang, Z.; Du, X.; Wang, X. Comparison of fouling behaviors between activated sludge suspension in MBR and EPS model solutions: A new combined model. J. Membr. Sci. 2021, 621, 119020. [Google Scholar] [CrossRef]
- Capodici, M.; Di Bella, G.; Di Trapani, D.; Torregrossa, M. Pilot scale experiment with MBR operated in intermittent aeration condition: Analysis of biological performance. Bioresour. Technol. 2015, 177, 398–405. [Google Scholar] [CrossRef]
- Teng, J.; Shen, L.; Xu, Y.; Chen, Y.; Wu, X.L.; He, Y.; Chen, J.; Lin, H. Effects of molecular weight distribution of soluble microbial products (SMPs) on membrane fouling in a membrane bioreactor (MBR): Novel mechanistic insights. Chemosphere 2020, 248, 126013. [Google Scholar] [CrossRef]
- Zhao, L.; She, Z.; Jin, C.; Yang, S.; Guo, L.; Zhao, Y.; Gao, M. Characteristics of extracellular polymeric substances from sludge and biofilm in a simultaneous nitrification and denitrification system under high salinity stress. Bioprocess Biosyst. Eng. 2016, 39, 1375–1389. [Google Scholar] [CrossRef]
- Costa, O.Y.A.; Raaijmakers, J.M.; Kuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef] [Green Version]
- Nouha, K.; Kumar, R.S.; Balasubramanian, S.; Tyagi, R.D. Critical review of EPS production, synthesis and composition for sludge flocculation. J. Environ. Sci. 2018, 66, 225–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, M.; Maršálek, L.; de Sousa Dias, M.M.; Braunegg, G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 2017, 37, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Malaeb, L.; Le-Clech, P.; Vrouwenvelder, J.S.; Ayoub, G.M.; Saikaly, P.E. Do biological-based strategies hold promise to biofouling control in MBRs? Water Res. 2013, 47, 5447–5463. [Google Scholar] [CrossRef] [PubMed]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A.M. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Morgan-Sagastume, F.; Hjort, M.; Cirne, D.; Gérardin, F.; Lacroix, S.; Gaval, G.; Karabegovic, L.; Alexandersson, T.; Johansson, P.; Karlsson, A.; et al. Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresour. Technol. 2015, 181, 78–89. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; ISBN 978-0875532356. [Google Scholar]
- Le-Clech, P.; Chen, V.; Fane, T.A.G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284, 17–53. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin-Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Rosenberg, M. Bacterial adherence to hydrocarbons: A useful technique for studying cell surface hydrophobicity. FEMS Microbiol. Lett. 1984, 22, 289–295. [Google Scholar] [CrossRef]
- Fiorese, M.L.; Freitas, F.; Pais, J.; Ramos, A.M.; De Aragão, G.M.F.; Reis, M.A.M. Recovery of polyhydroxybutyrate (PHB) from Cupriavidus necator biomass by solvent extraction with 1,2-propylene carbonate. Eng. Life Sci. 2009, 9, 454–461. [Google Scholar] [CrossRef]
- Dionisi, D.; Carucci, G.; Petrangeli Papini, M.; Riccardi, C.; Majone, M.; Carrasco, F. Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res. 2005, 39, 2076–2084. [Google Scholar] [CrossRef] [PubMed]
- Palmeiro-Sánchez, T.; Val Del Rio, A.; Fra-Vázquez, A.; Luis Campos, J.; Mosquera-Corral, A. High-Yield Synthesis of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Copolymers in a Mixed Microbial Culture: Effect of Substrate Switching and F/M Ratio. Ind. Eng. Chem. Res. 2019, 58, 21921–21926. [Google Scholar] [CrossRef]
- Crognale, S.; Laurini, L.; Valentino, F.; Villano, M.; Marzo Gago, C.; Tonanzi, B.; Maione, M.; Rossetti, S. Effect of the organic loading rate on the PHA-storing microbiome in sequencing batch reactors operated with uncoupled carbon and nitrogen feeding. Sci. Total Environ. 2022, 825, 153995. [Google Scholar] [CrossRef]
- Valentino, F.; Morgan-Sagastume, F.; Campanari, S.; Villano, M.; Werker, A.; Majone, M. Carbon recovery from wastewater through bioconversion into biodegradable polymers. New Biotechnol. 2017, 37, 9–23. [Google Scholar] [CrossRef] [Green Version]
- de Jesus Assis, D.; Gomes, G.V.P.; da Cunha Pascoal, D.R.; Pinho, L.S.; Chaves, L.B.O.; Druzian, J.I. Simultaneous Biosynthesis of Polyhydroxyalkanoates and Extracellular Polymeric Substance (EPS) from Crude Glycerol from Biodiesel Production by Different Bacterial Strains. Appl. Biochem. Biotechnol. 2016, 180, 1110–1127. [Google Scholar] [CrossRef]
- Licciardello, G.; Catara, A.F.; Catara, V. Production of polyhydroxyalkanoates and extracellular products using Pseudomonas corrugata and P. mediterranea: A review. Bioengineering 2019, 6, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.W.; Gong, X.Y.; Shi, Y.P.; Wang, Z. Salinity effect on production of PHA and EPS by: Haloferax mediterranei. RSC Adv. 2017, 7, 53587–53595. [Google Scholar] [CrossRef] [Green Version]
- Di Trapani, D.; Corsino, S.F.; Torregrossa, M.; Viviani, G. Treatment of high strength industrial wastewater with membrane bioreactors for water reuse: Effect of pre-treatment with aerobic granular sludge on system performance and fouling tendency. J. Water Process Eng. 2019, 31, 100859. [Google Scholar] [CrossRef]
- Regulation EU 2020/741 Regulation (EU) 2020/741, Minimum Requirements for Water Reuse. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009 (accessed on 26 June 2022).
- Mutamim, N.S.A.; Noor, Z.Z.; Hassan, M.A.A.; Olsson, G. Application of membrane bioreactor technology in treating high strength industrial wastewater: A performance review. Desalination 2012, 305, 1–11. [Google Scholar] [CrossRef]
- Meng, F.; Chae, S.R.; Drews, A.; Kraume, M.; Shin, H.S.; Yang, F. Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Res. 2009, 43, 1489–1512. [Google Scholar] [CrossRef]
- Banti, D.; Mitrakas, M.; Fytianos, G.; Tsali, A.; Samaras, P. Combined effect of colloids and SMP on membrane fouling in MBRs. Membranes 2020, 10, 118. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Guo, Z.; Liang, Z.; Hou, X.; Li, Z.; Mu, D.; Ge, C.; Zhang, C.; Jin, C. Long-term investigation into the membrane fouling behavior in anaerobic membrane bioreactors for municipal wastewater treatment operated at two different temperatures. Membranes 2020, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Torregrossa, M.; Viviani, G. The role of EPS concentration in MBR foaming: Analysis of a submerged pilot plant. Bioresour. Technol. 2011, 102, 1628–1635. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ng, T.C.A.; Ding, M.; Ng, H.Y. Insights on fouling development and characteristics during different fouling stages between a novel vibrating MBR and an air-sparging MBR for domestic wastewater treatment. Water Res. 2022, 212, 118098. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Liu, X.; Zhang, R.; Li, Y.; Liu, P.; Lu, J. Investigation and evaluation of membrane fouling in a microbial fuel cell-membrane bioreactor systems (MFC-MBR). Sci. Total Environ. 2022, 814, 152569. [Google Scholar] [CrossRef] [PubMed]
- Souza, E.; Follmann, H.V.D.M.; Dalri-Cecato, L.; Battistelli, A.A.; Lobo-Recio, M.A.; Belli, T.J.; Lapolli, F.R. Membrane fouling suppression using intermittent electric current with low exposure time in a sequencing batch membrane bioreactor. J. Environ. Chem. Eng. 2020, 8, 104018. [Google Scholar] [CrossRef]
- Zhang, H.M.; Xiao, J.N.; Cheng, Y.J.; Liu, L.F.; Zhang, X.W.; Yang, F.L. Comparison between a sequencing batch membrane bioreactor and a conventional membrane bioreactor. Process Biochem. 2006, 41, 87–95. [Google Scholar] [CrossRef]
Period 1 | Period 2 | Period 3 | Period 4 | |
---|---|---|---|---|
Operating days [d] | 0–52 | 53–115 | 116–150 | 151–175 |
Daily flow [L d−1] | 30 | 10 | 20 | 30 |
HRT [days] | 1.33 | 4 | 2 | 1.33 |
Biomass concentration [g TSS L−1] | 4.0 ± 0.2 | 8.0 ± 0.1 | 7.8 ± 0.3 | 8.2 ± 0.2 |
OLR [kg COD m−3 d−1] | 3.2 ± 0.3 | 1.1 ± 0.2 | 2.2 ± 0.1 | 3.1 ± 0.2 |
F/M [kg COD kg TSS−1 d−1] | 0.8 ± 0.2 | 0.13 ± 0.2 | 0.28 ± 0.2 | 0.38 ± 0.2 |
SRT [days] | 7.4 | 24 | 10 | 8.9 |
Volumetric Exchange Ratio (VER) [%] | 0.375 | 0.250 | 0.500 | 0.375 |
Hydraulic Retention Time (HRT) [d] | 1.33 | 4 | 2 | 1.33 |
Temperature [°C] | 17.8 | 18.3 | 19.4 | 21.0 |
Membrane suction flux [L m−2 h−1] | 14.57 | 14.57 | 14.57 | 14.57 |
Membrane backwashing flux [L m−2 h−1] | 8.57 | 8.57 | 8.57 | 8.57 |
Filtration time/cycle [min cycle−1] | 60 | 20 | 40 | 60 |
Parameter | Unit | Value |
---|---|---|
Total COD | [mg L−1] | 4558 ± 289 |
Soluble COD | [mg L−1] | 3486 ± 201 |
Total nitrogen | [mg L−1] | 12.6 ± 3.0 |
Total phosphorus | [mg L−1] | 3.4 ± 0.7 |
pH | [-] | 5.43 ± 0.49 |
Period | Hydrophobicity | PSD | ||
---|---|---|---|---|
[-] | d10 [µm] | d50 [µm] | d90 [µm] | |
Period 1 | 0.84 ± 0.04 | 21.3 | 44.12 | 81.41 |
Period 2 | 0.91 ± 0.02 | 26.4 | 51.68 | 96.44 |
Period 3 | 0.80 ± 0.06 | 19.5 | 60.47 | 95.13 |
Period 4 | 0.76 ± 0.05 | 16.3 | 55.59 | 90.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corsino, S.F.; Di Bella, G.; Traina, F.; Montes, L.A.; Val del Rio, A.; Corral, A.M.; Torregrossa, M.; Viviani, G. Membrane Fouling Mitigation in MBR via the Feast–Famine Strategy to Enhance PHA Production by Activated Sludge. Membranes 2022, 12, 703. https://doi.org/10.3390/membranes12070703
Corsino SF, Di Bella G, Traina F, Montes LA, Val del Rio A, Corral AM, Torregrossa M, Viviani G. Membrane Fouling Mitigation in MBR via the Feast–Famine Strategy to Enhance PHA Production by Activated Sludge. Membranes. 2022; 12(7):703. https://doi.org/10.3390/membranes12070703
Chicago/Turabian StyleCorsino, Santo Fabio, Gaetano Di Bella, Francesco Traina, Lucia Argiz Montes, Angeles Val del Rio, Anuska Mosquera Corral, Michele Torregrossa, and Gaspare Viviani. 2022. "Membrane Fouling Mitigation in MBR via the Feast–Famine Strategy to Enhance PHA Production by Activated Sludge" Membranes 12, no. 7: 703. https://doi.org/10.3390/membranes12070703