Sensitivity of Material, Microstructure and Operational Parameters on the Performance of Asymmetric Oxygen Transport Membranes: Guidance from Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.2. D Transport Model
3. Results and Discussion
3.1. Sensitivity Analysis
3.2. Support Properties
3.2.1. Tortuosity
3.2.2. Porosity
3.2.3. Thickness
3.3. Pore Diameter
3.4. Membrane Properties
3.4.1. Ambipolar Conductivity
3.4.2. Characteristic Thickness
3.4.3. Membrane Layer Thickness
3.5. Pressure
3.6. Gas Properties
3.6.1. Binary Diffusion Coefficient
3.6.2. Viscosity
3.7. Temperature
3.8. Total Effect of the Support Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deibert, W.; Ivanova, M.E.; Baumann, S.; Guillon, O.; Meulenberg, W.A. Ion-conducting ceramic membrane reactors for high-temperature applications. J. Memb. Sci. 2017, 543, 79–97. [Google Scholar] [CrossRef]
- Arratibel Plazaola, A.; Cruellas Labella, A.; Liu, Y.; Badiola Porras, N.; Pacheco Tanaka, D.; Sint Annaland, M.; Gallucci, F. Mixed Ionic-Electronic Conducting Membranes (MIEC) for their Application in Membrane Reactors: A Review. Processes 2019, 7, 128. [Google Scholar] [CrossRef] [Green Version]
- Baumann, S.; Meulenberg, W.A.; Buchkremer, H.P. Manufacturing strategies for asymmetric ceramic membranes for efficient separation of oxygen from air. J. Eur. Ceram. Soc. 2013, 33, 1251–1261. [Google Scholar] [CrossRef]
- Schulze-Küppers, F.; Baumann, S.; Meulenberg, W.A.; Stöver, D.; Buchkremer, H.P. Manufacturing and performance of advanced supported Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) oxygen transport membranes. J. Memb. Sci. 2013, 433, 121–125. [Google Scholar] [CrossRef]
- Li, C.; Chew, J.J.; Mahmoud, A.; Liu, S.; Sunarso, J. Modelling of oxygen transport through mixed ionic-electronic conducting (MIEC) ceramic-based membranes: An overview. J. Memb. Sci. 2018, 567, 228–260. [Google Scholar] [CrossRef]
- Unije, U.V.; Mücke, R.; Niehoff, P.; Baumann, S.; Vaßen, R.; Guillon, O. Simulation of the effect of the porous support on flux through an asymmetric oxygen transport membrane. J. Memb. Sci. 2017, 524, 334–343. [Google Scholar] [CrossRef]
- Unije, U.V.; Mücke, R.; Baumann, S.; Guillon, O. Comparison of the simplification of the pressure profiles solving the binary friction model for asymmetric membranes. Membranes 2017, 7, 58. [Google Scholar] [CrossRef]
- Li, H.; Schygulla, U.; Hoffmann, J.; Niehoff, P.; Haas-Santo, K.; Dittmeyer, R. Experimental and modeling study of gas transport through composite ceramic membranes. Chem. Eng. Sci. 2014, 108, 94–102. [Google Scholar] [CrossRef]
- Catalán-Martínez, D.; Santafé-Moros, A.; Gozálvez-Zafrilla, J.M.; García-Fayos, J.; Serra, J.M. Characterization of oxygen transport phenomena on BSCF membranes assisted by fluid dynamic simulations including surface exchange. Chem. Eng. J. 2020, 387, 124069. [Google Scholar] [CrossRef]
- Bouwmeester, H.J.M.; Kruidhof, H.; Burggraaf, A.J.J. Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ionics 1994, 72, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Kerkhof, P.J.A.M. A modified Maxwell-Stefan model for transport through inert membranes: The binary friction model. Chem. Eng. J. Biochem. Eng. J. 1996, 64, 319–343. [Google Scholar] [CrossRef] [Green Version]
- Niehoff, P. Entwicklung Planarer Ba0,5Sr0,5Co0,8Fe0,2O3-δ-Membranmodule zur Sauerstoffabtrennung und Analyse ihres Transportverhaltens; Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag: Jülich, Germany, 2015; ISBN 978-3-95806-044-9. [Google Scholar]
- Unije, U.V. Simulation of Transport Processes through an Asymmetric Gas Separation Membrane; Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag: Jülich, Germany, 2019; Volume 463, ISBN 978-3-95806-403-4. [Google Scholar]
- Unije, U.V. Simulation of Transport Processes through Asymmetric Gas Separation Membrane. Master‘s Thesis, RWTH Aachen University, Aachen, Germany, 2014. [Google Scholar]
- Niehoff, P.; Baumann, S.; Schulze-Küppers, F.; Bradley, R.S.; Shapiro, I.; Meulenberg, W.A.; Withers, P.J.; Vaßen, R. Oxygen transport through supported Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes. Sep. Purif. Technol. 2014, 121, 60–67. [Google Scholar] [CrossRef]
- Schulze-Küppers, F.; Ten Donkelaar, S.F.P.; Baumann, S.; Prigorodov, P.; Sohn, Y.J.; Bouwmeester, H.J.M.; Meulenberg, W.A.; Guillon, O. Structural and functional properties of SrTi1-xFexO3-δ (0 ≤ x ≤ 1) for the use as oxygen transport membrane. Sep. Purif. Technol. 2015, 147, 414–421. [Google Scholar] [CrossRef]
- Epstein, N. On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 1989, 44, 777–779. [Google Scholar] [CrossRef]
- Benes, N. Mass Transport in Thin Supported Silica Membranes; Enschede: Universiteit Twente, The Netherlands, 2000; ISBN 9036515327. [Google Scholar]
- Bird, R.B.; Warren, E.S.; Lightfoot, N.E. Transport Phenomena, 2nd ed.; John Wiley Sons, Inc.: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Neufeld, P.D.; Janzen, A.R.; Aziz, R.A. Empirical equations to calculate 16 of the transport collision integrals Ω(l,8)* for the lennard-jones (12-6) potential. J. Chem. Phys. 1972, 57, 1100–1102. [Google Scholar] [CrossRef]
- Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B. Molecular Theory of Gases and Liquids; Bird, R.B., Ed.; Wiley: New York, NY, USA, 1954. [Google Scholar]
- Tee, L.S.; Gotoh, S.; Stewart, W.E. Molecular parameters for normal fluids: Lennard-Jones 12-6 Potential. Ind. Eng. Chem. Fundam. 1966, 5, 356–363. [Google Scholar] [CrossRef]
- Press, W.H. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Press, W.H., Ed.; Cambridge University Press: Cambridge, UK, 2002; ISBN 0521431085. [Google Scholar]
- Brent, R.P. Algorithms for Minimization without Derivatives; Brent, R.P., Ed.; Prentice Hall series in automatic computation; Prentice-Hall: Englewood Cliffs, NJ, USA; Hemel Hempstead, UK, 1974; Volume 19, ISBN 0130223352. [Google Scholar]
- Schulze-Küppers, F.; Unije, U.V.; Blank, H.; Balaguer, M.; Baumann, S.; Mücke, R.; Meulenberg, W.A.W.A. Comparison of freeze-dried and tape-cast support microstructure on high-flux oxygen transport membrane performance. J. Memb. Sci. 2018, 564, 218–226. [Google Scholar] [CrossRef]
- Cheng, S.; Huang, H.; Ovtar, S.; Simonsen, S.B.; Chen, M.; Zhang, W.; Søgaard, M.; Kaiser, A.; Hendriksen, P.V.; Chen, C. High-Performance Microchanneled Asymmetric Gd0.1Ce0.9O1.95-δ-La0.6Sr0.4FeO3-δ-Based Membranes for Oxygen Separation. ACS Appl. Mater. Interfaces 2016, 8, 4548–4560. [Google Scholar] [CrossRef]
- Clennell, M. Ben Tortuosity: A guide through the maze. Geol. Soc. Lond. Spec. Publ. 1997, 122, 299–344. [Google Scholar] [CrossRef]
- Petersen, E.E. Diffusion in a pore of varying cross section. AIChE J. 1958, 4, 343–345. [Google Scholar] [CrossRef]
- Holzer, L.; Wiedenmann, D.; Münch, B.; Keller, L.; Prestat, M.; Gasser, P.; Robertson, I.; Grobéty, B. The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells. J. Mater. Sci. 2013, 48, 2934–2952. [Google Scholar] [CrossRef]
- Wang, L.; Merkle, R.; Maier, J. Surface Kinetics and Mechanism of Oxygen Incorporation Into Ba1−xSrxCoyFe1−yO3−δ SOFC Microelectrodes. J. Electrochem. Soc. 2010, 157, B1802. [Google Scholar] [CrossRef]
- Hunt, A.; Dimitrakopoulos, G.; Kirchen, P.; Ghoniem, A.F. Measuring the oxygen profile and permeation flux across an ion transport (La0.9Ca0.1FeO3-δ) membrane and the development and validation of a multistep surface exchange model. J. Memb. Sci. 2014, 468, 62–72. [Google Scholar] [CrossRef]
- Kirchen, P.; Apo, D.J.; Hunt, A.; Ghoniem, A.F. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions. Proc. Combust. Inst. 2013, 34, 3463–3470. [Google Scholar] [CrossRef]
- Steil, M.C.; Fouletier, J.; Geffroy, P.-M. Surface exchange polarization vs. gas concentration polarization in permeation through mixed ionic-electronic membranes. J. Memb. Sci. 2017, 541, 457–464. [Google Scholar] [CrossRef]
- Fuller, E.N.; Schettler, P.D.; Giddings, J.C. New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 1966, 58, 18–27. [Google Scholar] [CrossRef]
- McGee, H.A., Jr. Molecular Engineering; McGraw-Hill, Inc.: New York, NY, USA, 1991; Volume 123, ISBN 0070449775, 9780070449770. [Google Scholar]
- Kong, W.; Zhang, Q.; Xu, X.; Chen, D. A simple expression for the tortuosity of gas transport paths in solid oxide fuel cells’ porous electrodes. Energies 2015, 8, 13953–13959. [Google Scholar] [CrossRef] [Green Version]
- Cooper, S.J.; Bertei, A.; Shearing, P.R.; Kilner, J.A.; Brandon, N.P. TauFactor: An open-source application for calculating tortuosity factors from tomographic data. SoftwareX 2016, 5, 203–210. [Google Scholar] [CrossRef]
Parameter | Value | |
---|---|---|
BSCF | STF | |
Dense Membrane | ||
characteristic thickness [µm] | 28 | |
ambipolar conductivity [S/m] | 123.3 | 3.3 |
Porous Support | ||
support thickness [µm] | 900 | |
Experimental Conditions | ||
temperature [K] | 1173 | |
absolute pressure and [hPa] | 1000 | |
molar composition feed [-] (balance N2) | 0.209 | |
molar composition permeate [-] (balance Ar) | 0.0415 |
Fuller Correlation [cm2/s] | Chapman–Enskog [cm2/s] | Deviation [%] | |
---|---|---|---|
O2Ar | 21.37 | 20.23 | 5.3 |
O2N2 | 22.49 | 20.97 | 6.8 |
BSCF | STF | |||
---|---|---|---|---|
Flux w/o Support (jw/oS) [mL cm−2 min−1] | 23.07 | 0.62 | ||
SF | SP | SF | SP | |
Flux w support (jws) [mL cm−2 min−1] | 7.52 | 5.18 | 0.60 | 0.53 |
Support limitation (SL) [%] | 67.4 | 77.5 | 3.0 | 14.6 |
Parameter | Value |
---|---|
Dense Membrane | |
characteristic thickness [µm] | 28 |
ambipolar conductivity [S/m] | 123.3 |
Porous Support | |
support thickness [µm] | 300 |
porosity [-] | 0.6 |
>tortuosity [-] | 1 |
pore diameter [µm] | 7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilkner, K.; Mücke, R.; Baumann, S.; Meulenberg, W.A.; Guillon, O. Sensitivity of Material, Microstructure and Operational Parameters on the Performance of Asymmetric Oxygen Transport Membranes: Guidance from Modeling. Membranes 2022, 12, 614. https://doi.org/10.3390/membranes12060614
Wilkner K, Mücke R, Baumann S, Meulenberg WA, Guillon O. Sensitivity of Material, Microstructure and Operational Parameters on the Performance of Asymmetric Oxygen Transport Membranes: Guidance from Modeling. Membranes. 2022; 12(6):614. https://doi.org/10.3390/membranes12060614
Chicago/Turabian StyleWilkner, Kai, Robert Mücke, Stefan Baumann, Wilhelm Albert Meulenberg, and Olivier Guillon. 2022. "Sensitivity of Material, Microstructure and Operational Parameters on the Performance of Asymmetric Oxygen Transport Membranes: Guidance from Modeling" Membranes 12, no. 6: 614. https://doi.org/10.3390/membranes12060614
APA StyleWilkner, K., Mücke, R., Baumann, S., Meulenberg, W. A., & Guillon, O. (2022). Sensitivity of Material, Microstructure and Operational Parameters on the Performance of Asymmetric Oxygen Transport Membranes: Guidance from Modeling. Membranes, 12(6), 614. https://doi.org/10.3390/membranes12060614