The Intrinsic Parameters of the Polyamide Nanofilm in Thin-Film Composite Reverse Osmosis (TFC-RO) Membranes: The Impact of Monomer Concentration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Methods
2.2. Membrane Preparation
2.3. Characterization
2.3.1. Morphological Characterization
2.3.2. Evaluation of Membrane Performance
3. Results and Discussion
3.1. The Structural Analysis of the PA Layer
3.1.1. Series 1
3.1.2. Series 2
3.1.3. Series 3
3.2. Chemical Structure Characterization
3.2.1. FTIR
3.2.2. XPS
3.3. Evaluation of Membrane Performance
3.4. Correlation Analysis of the Membrane Structure and Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uemura, T.; Kotera, K.; Henmi, M.; Tomioka, H. Membrane technology in seawater desalination: History, recent developments and future prospects. Desal. Water Treat. 2011, 33, 283–288. [Google Scholar] [CrossRef]
- Teow, Y.H.; Mohammad, A.W. New generation nanomaterials for water desalination: A review. Desalination 2019, 451, 2–17. [Google Scholar] [CrossRef]
- Porter, M.C. Handbook of Industrial Membrane Technology; Noyes Publications: Westwood, NJ, USA, 1989. [Google Scholar]
- Lau, W.; Ismail, A.; Misdan, N.; Kassim, M. A recent progress in thin film composite membrane: A review. Desalination 2012, 287, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Imbrogno, J.; Keating IV, J.J.; Kilduff, J.; Belfort, G. Critical aspects of RO desalination: A combination strategy. Desalination 2017, 401, 68–87. [Google Scholar] [CrossRef] [Green Version]
- Elimelech, M.; Phillip, W.A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712. [Google Scholar] [CrossRef]
- Song, X.; Gan, B.; Yang, Z.; Tang, C.Y.; Gao, C. Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes. J. Membr. Sci. 2019, 582, 342–349. [Google Scholar] [CrossRef]
- Song, X.; Gan, B.; Qi, S.; Guo, H.; Tang, C.Y.; Zhou, Y.; Gao, C. Intrinsic Nanoscale Structure of Thin Film Composite Polyamide Membranes: Connectivity, Defects, and Structure-Property Correlation. Environ. Sci. Technol. 2020, 54, 3559–3569. [Google Scholar] [CrossRef]
- Cadotte, J.E.; King, R.; Majerle, R.; Petersen, R. Interfacial synthesis in the preparation of reverse osmosis membranes. J. Macromol. Sci. Chem. 1981, 15, 727–755. [Google Scholar] [CrossRef]
- Gan, B.; Qi, S.; Song, X.; Yang, Z.; Tang, C.Y.; Cao, X.; Zhou, Y.; Gao, C. Ultrathin polyamide nanofilm with an asymmetrical structure: A novel strategy to boost the permeance of reverse osmosis membranes. J. Membr. Sci. 2020, 612, 118402. [Google Scholar] [CrossRef]
- Freger, V. Kinetics of film formation by interfacial polycondensation. Langmuir 2005, 21, 1884–1894. [Google Scholar] [CrossRef]
- Yang, Z.; Sun, P.-F.; Li, X.; Gan, B.; Wang, L.; Song, X.; Park, H.-D.; Tang, C.Y. A Critical Review on Thin-Film Nanocomposite Membranes with Interlayered Structure: Mechanisms, Recent Developments, and Environmental Applications. Environ. Sci. Technol. 2020, 54, 24. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Jeong, B.-H.; Huang, X.; Hoek, E.M.V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J. Membr. Sci. 2008, 311, 34–45. [Google Scholar] [CrossRef]
- Song, X.; Smith, J.W.; Kim, J.; Zaluzec, N.J.; Chen, W.; An, H.; Dennison, J.M.; Cahill, D.G.; Kulzick, M.A.; Chen, Q. Unraveling the morphology–function relationships of polyamide membranes using quantitative electron tomography. ACS Appl. Mater. Interfaces 2019, 11, 8517–8526. [Google Scholar] [CrossRef]
- Ma, X.-H.; Yao, Z.-K.; Yang, Z.; Guo, H.; Xu, Z.-L.; Tang, C.Y.; Elimelech, M. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity. Environ. Sci. Technol. Lett. 2018, 5, 123–130. [Google Scholar] [CrossRef]
- Yan, W.; Wang, Z.; Zhao, S.; Wang, J.; Zhang, P.; Cao, X. Combining co-solvent-optimized interfacial polymerization and protective coating-controlled chlorination for highly permeable reverse osmosis membranes with high rejection. J. Membr. Sci. 2019, 572, 61–72. [Google Scholar] [CrossRef]
- Lin, L.; Lopez, R.; Ramon, G.Z.; Coronell, O. Investigating the void structure of the polyamide active layers of thin-film composite membranes. J. Membr. Sci. 2016, 497, 365–376. [Google Scholar] [CrossRef]
- Lin, L.; Feng, C.; Lopez, R.; Coronell, O. Identifying facile and accurate methods to measure the thickness of the active layers of thin-film composite membranes—A comparison of seven characterization techniques. J. Membr. Sci. 2016, 498, 167–179. [Google Scholar] [CrossRef]
- Karan, S.; Jiang, Z.; Livingston, A.G. Membrane Filtration. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 2015, 348, 1347–1351. [Google Scholar] [CrossRef]
- Jiang, Z.; Karan, S.; Livingston, A.G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv. Mater. 2018, 30, 1705973. [Google Scholar] [CrossRef]
- Pacheco, F.A.; Pinnau, I.; Reinhard, M.; Leckie, J.O. Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques. J. Membr. Sci. 2010, 358, 51–59. [Google Scholar] [CrossRef]
- Xu, J.; Yan, H.; Zhang, Y.; Pan, G.; Liu, Y. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes. J. Membr. Sci. 2017, 541, 174–188. [Google Scholar] [CrossRef]
- Yan, H.; Miao, X.; Xu, J.; Pan, G.; Zhang, Y.; Shi, Y.; Guo, M.; Liu, Y. The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes. J. Membr. Sci. 2015, 475, 504–510. [Google Scholar] [CrossRef]
- Wang, S.; Bing, S.; Li, Y.; Zhou, Y.; Zhang, L.; Gao, C. Polyamide membrane with nanocluster assembly structure for desalination. J. Membr. Sci. 2021, 628, 119230. [Google Scholar] [CrossRef]
- Wu, B.; Wang, S.; Wang, J.; Song, X.; Zhou, Y.; Gao, C. Facile fabrication of high-performance thin film nanocomposite desalination membranes imbedded with alkyl group-capped silica nanoparticles. Polymers 2020, 12, 1415. [Google Scholar] [CrossRef]
- Shen, H.; Wang, S.; Li, Y.; Gu, K.; Zhou, Y.; Gao, C. MeSiCl3 functionalized polyamide thin film nanocomposite for low pressure RO membrane desalination. Desalination 2019, 463, 13–22. [Google Scholar] [CrossRef]
- Habib, S.; Weinman, S.T. A review on the synthesis of fully aromatic polyamide reverse osmosis membranes. Desalination 2021, 502, 114939. [Google Scholar] [CrossRef]
- Dalvi, V.; Tang, Y.P.; Staudt, C.; Chung, T.S. Influential effects of nanoparticles, solvent and surfactant treatments on thin film nanocomposite (TFN) membranes for seawater desalination. Desalination 2017, 420, 216–225. [Google Scholar] [CrossRef]
- Jeong, B.-H.; Hoek, E.M.; Yan, Y.; Subramani, A.; Huang, X.; Hurwitz, G.; Ghosh, A.K.; Jawor, A. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci. 2007, 294, 1–7. [Google Scholar] [CrossRef]
- Liu, L.; Xie, X.; Qi, S.; Li, R.; Zhang, X.; Song, X.; Gao, C. Thin film nanocomposite reverse osmosis membrane incorporated with UiO-66 nanoparticles for enhanced boron removal. J. Membr. Sci. 2019, 580, 101–109. [Google Scholar] [CrossRef]
- Culp, T.E.; Khara, B.; Brickey, K.P.; Geitner, M.; Zimudzi, T.J.; Wilbur, J.D.; Jons, S.D.; Roy, A.; Paul, M.; Ganapathysubramanian, B. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 2021, 371, 72–75. [Google Scholar] [CrossRef]
- Kolev, V.; Freger, V. Hydration, porosity and water dynamics in the polyamide layer of reverse osmosis membranes: A molecular dynamics study. Polymer 2014, 55, 1420–1426. [Google Scholar] [CrossRef]
- Shen, H.; Wang, S.; Xu, H.; Zhou, Y.; Gao, C. Preparation of polyamide thin film nanocomposite membranes containing silica nanoparticles via an in-situ polymerization of SiCl4 in organic solution. J. Membr. Sci. 2018, 565, 145–156. [Google Scholar] [CrossRef]
- Lee, J.; Hill, A.; Kentish, S. Formation of a thick aromatic polyamide membrane by interfacial polymerisation. Sep. Purif. Technol. 2013, 104, 276–283. [Google Scholar] [CrossRef]
- Guclu, S.; Erkoc-Ilter, S.; Koseoglu-Imer, D.Y.; Unal, S.; Menceloglu, Y.Z.; Ozturk, I.; Koyuncu, I. Interfacially polymerized thin-film composite membranes: Impact of support layer pore size on active layer polymerization and seawater desalination performance. Sep. Purif. Technol. 2019, 212, 438–448. [Google Scholar]
- Kamada, T.; Ohara, T.; Shintani, T.; Tsuru, T. Controlled surface morphology of polyamide membranes via the addition of co-solvent for improved permeate flux. J. Membr. Sci. 2014, 467, 303–312. [Google Scholar] [CrossRef]
- Kong, C.; Kanezashi, M.; Yamomoto, T.; Shintani, T.; Tsuru, T. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination. J. Membr. Sci. 2010, 362, 76–80. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, S.F.; Peng, X.S.; Zhang, L.; Gao, C.J. Polyamide membranes with nanoscale Turing structures for water purification. Science 2018, 360, 518. [Google Scholar] [CrossRef] [Green Version]
- Al-Jeshi, S.; Neville, A. An investigation into the relationship between flux and roughness on RO membranes using scanning probe microscopy. Desalination 2006, 189, 221–228. [Google Scholar] [CrossRef]
- Ma, X.; Yang, Z.; Yao, Z.; Guo, H.; Xu, Z.; Tang, C.Y. Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance. J. Colloid Interface Sci. 2019, 540, 382–388. [Google Scholar] [CrossRef]
- Kim, S.H.; Kwak, S.-Y.; Suzuki, T. Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane. Environ. Sci. Technol. 2005, 39, 1764–1770. [Google Scholar] [CrossRef]
- Chang, H.; Li, T.; Liu, B.; Vidic, R.D.; Elimelech, M.; Crittenden, J.C. Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review. Desalination 2019, 455, 34–57. [Google Scholar] [CrossRef]
- Hirose, M.; Ito, H.; Kamiyama, Y. Effect of skin layer surface structures on the flux behaviour of RO membranes. J. Membr. Sci. 1996, 121, 209–215. [Google Scholar] [CrossRef]
- Kamada, T.; Ohara, T.; Shintani, T.; Tsuru, T. Optimizing the preparation of multi-layered polyamide membrane via the addition of a co-solvent. J. Membr. Sci. 2014, 453, 489–497. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination 2020, 475, 114171. [Google Scholar] [CrossRef]
- Li, Y.; Kłosowski, M.M.; McGilvery, C.M.; Porter, A.E.; Livingston, A.G.; Cabral, J.T. Probing flow activity in polyamide layer of reverse osmosis membrane with nanoparticle tracers. J. Membr. Sci. 2017, 534, 9–17. [Google Scholar] [CrossRef]
- Freger, V. Nanoscale Heterogeneity of Polyamide Membranes Formed by Interfacial Polymerization. Langmuir 2003, 19, 4791–4797. [Google Scholar] [CrossRef]
- Freger, V.; Srebnik, S. Mathematical model of charge and density distributions in interfacial polymerization of thin films. J. Appl. Polym. Sci. 2003, 88, 1162–1169. [Google Scholar] [CrossRef]
- Jin, Y.; Su, Z. Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films. J. Membr. Sci. 2009, 330, 175–179. [Google Scholar] [CrossRef]
- Xie, W.; Geise, G.M.; Freeman, B.D.; Lee, H.-S.; Byun, G.; McGrath, J.E. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. J. Membr. Sci. 2012, 403–404, 152–161. [Google Scholar] [CrossRef]
- Song, X.; Qi, S.; Tang, C.Y.; Gao, C. Ultra-thin, multi-layered polyamide membranes: Synthesis and characterization. J. Membr. Sci. 2017, 540, 10–18. [Google Scholar] [CrossRef]
- Yan, W.; Shi, M.; Wang, Z.; Zhao, S.; Wang, J. Confined growth of skin layer for high performance reverse osmosis membrane. J. Membr. Sci. 2019, 585, 208–217. [Google Scholar] [CrossRef]
- Wittbecker, E.L.; Morgan, P.W. Interfacial polycondensation. I. J. Polym. Sci. 1959, 40, 289–297. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Hoek, E.M.V. Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. J. Membr. Sci. 2009, 336, 140–148. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 2009, 242, 149–167. [Google Scholar] [CrossRef]
- Tang, C.Y.; Kwon, Y.-N.; Leckie, J.O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 2009, 242, 168–182. [Google Scholar] [CrossRef]
- Mitchell, G.E.; Mickols, B.; Hernandez-Cruz, D.; Hitchcock, A. Unexpected new phase detected in FT30 type reverse osmosis membranes using scanning transmission X-ray microscopy. Polymer 2011, 52, 3956–3962. [Google Scholar] [CrossRef]
- Kamada, T.; Shintani, T.; Tsuru, T.; Yoshioka, T.; Kong, C. Composite Separation Membrane and Separation Membrane Element Using the Same. U.S. Patent 20130037482A1, 16 July 2019. [Google Scholar]
Membrane | MPD (wt/v%) | TMC (wt/v%) | c(MPD)/c(TMC) | |
---|---|---|---|---|
Series 1 a | TFC−1 | 0.25 | 0.11 | 2.27 |
TFC−2 | 0.5 | 0.11 | 4.55 | |
TFC−3 | 1.1 | 0.11 | 10.00 | |
TFC−4 | 2.2 | 0.11 | 20.00 | |
TFC−5 | 4.4 | 0.11 | 40.00 | |
TFC−6 | 8.8 | 0.11 | 80.00 | |
Series 2 b | TFC−7 | 2.2 | 0.01 | 220.00 |
TFC−8 | 2.2 | 0.02 | 110.00 | |
TFC−9 | 2.2 | 0.05 | 44.00 | |
TFC−10 d | 2.2 | 0.11 | 20.00 | |
TFC−11 | 2.2 | 0.22 | 10.00 | |
TFC−12 | 2.2 | 0.44 | 5.00 | |
Series 3 c | TFC−13 | 0.25 | 0.0125 | 20.00 |
TFC−14 | 0.5 | 0.025 | 20.00 | |
TFC−15 | 1.1 | 0.055 | 20.00 | |
TFC−16 d | 2.2 | 0.11 | 20.00 | |
TFC−17 | 4.4 | 0.22 | 20.00 | |
TFC−18 | 8.8 | 0.44 | 20.00 |
Series | NO. | Topside | Cross-Section | Backside | |||||
---|---|---|---|---|---|---|---|---|---|
δc-n a (nm) | Ra b (nm) | dn c (nm) | dc-n d (nm) | δint e (nm) | δapp f (nm) | dp g (nm) | ϕo h (%) | ||
1# | TFC−1 | 20.15 ± 2.89 | 19.78 ± 0.95 | 25.54 ± 5.74 | 50.3 ± 9.04 | 5.65 ± 0.76 | 36.71 ± 14.27 | 7.12 ± 1.69 | 0.51 |
TFC−2 | 26.00 ± 1.69 | 19.7 ± 0.73 | 33.30 ± 4.57 | 57.00± 14.90 | 11.93 ± 2.46 | 39.83 ± 9.06 | 8.00 ± 2.89 | 2.43 | |
TFC−3 | 29.20 ± 1.91 | 20.30 ± 0.68 | 50.93 ± 11.66 | 76.03 ± 14.13 | 18.67 ± 1.86 | 41.00 ± 8.45 | 23.84 ± 8.35 | 4.41 | |
TFC−4 | 35.40 ± 6.24 | 23.60 ± 1.25 | 68.34 ± 12.50 | 87.26 ± 23.87 | 21.00 ± 2.54 | 118.29 ± 26.12 | 35.37 ± 4.43 | 7.82 | |
TFC−5 | 38.60 ± 4.51 | 24.70 ± 0.72 | 80.40 ± 12.00 | 139.22 ± 34.77 | 23.61 ± 2.77 | 103.64 ± 41.47 | 54.11 ± 4.53 | 16.96 | |
TFC−6 | 45.34 ± 9.31 | 32.52 ± 8.19 | 87.90 ± 21.19 | / | 29.75 ± 1.96 | 81.08 ± 16.91 | 77.19 ± 13.98 | 28.40 | |
2# | TFC−7 | 15.41 ± 1.73 | 16.64 ± 0.88 | / | 144.68 ± 18.13 | / | / | / | / |
TFC−8 | 18.80 ± 3.41 | 60.02 ± 3.60 | 42.71 ± 7.77 | 201.85 ± 81 | 12.19 ± 2.84 | 40.00 ± 15.00 | 70.08 ± 22.53 | 15.65 | |
TFC−9 | 23.89 ± 2.39 | 61.62 ± 2.07 | 68.83 ± 12.50 | 225.88 ± 79.58 | 16.48 ± 1.71 | 78.91 ± 29.26 | 35.73 ± 5.98 | 9.13 | |
TFC−10 | 35.40 ± 6.24 | 23.60 ± 1.25 | 68.34 ± 12.50 | 87.26 ± 23.87 | 21.00 ± 2.54 | 118.29 ± 26.12 | 35.37 ± 4.43 | 7.82 | |
TFC−11 | 30.39 ± 2.34 | 30.24 ± 2.21 | 55.08 ± 11.67 | 94.2 ± 12.9 | 23.89 ± 2.12 | 83.76 ± 24.15 | 19.33 ± 4.65 | 1.72 | |
TFC−12 | 22.72 ± 2.82 | 27.04 ± 1.31 | 29.54 ± 18.36 | 98.92 ± 26.63 | 26.71 ± 4.99 | 97.96 ± 24.12 | 13.16 ± 4.09 | 0.47 | |
3# | TFC−13 | 21.60 ± 3.26 | 21.86 ± 1.12 | 38.43 ± 6.53 | 80.03 ± 9.89 | 6.66 ± 1.95 | 50.68 ± 11.93 | / | / |
TFC−14 | 25.63 ± 2.13 | 22.20 ± 0.20 | 44.23 ± 8.77 | 77.50 ± 13.15 | 12.51 ± 1.47 | 68.73 ± 18.77 | 14.36 ± 4.21 | 2.67 | |
TFC−15 | 28.66 ± 1.95 | 42.38 ± 5.82 | 62.45 ± 11.99 | 150.77 ± 35.69 | 17.55 ± 2.77 | 72.42 ± 22.51 | 27.33 ± 8.88 | 5.83 | |
TFC−16 | 35.40 ± 6.24 | 23.60 ± 1.25 | 68.34 ± 12.50 | 87.26 ± 23.87 | 21.00 ± 2.54 | 118.29 ± 26.12 | 35.37 ± 4.43 | 7.82 | |
TFC−17 | 42.49 ± 8.04 | 27.06 ± 1.48 | 77.92 ± 13.22 | / | 25.85 ± 4.03 | 100.07 ± 18.14 | 31.39 ± 6.52 | 20.64 | |
TFC−18 | 32.51 ± 8.78 | 45.02 ± 4.83 | 66.29 ± 9.90 | / | 23.41 ± 3.52 | 159.51 ± 23.71 | 24.46 ± 10.51 | 16.96 |
1# | c(MPD) (%) | A (L·m−2·h−1·bar−1) | Bs (L·m−2·h−1) | δint (nm) | dp (nm) | Ra (nm) | δapp (nm) |
---|---|---|---|---|---|---|---|
c(MPD) (%) | 1.00 | ||||||
A (L·m−2·h−1·bar−1) | 0.55 | 1.00 | |||||
Bs (L·m−2·h−1) | 0.85 | 0.10 | 1.00 | ||||
δint (nm) | 0.87 | 0.86 | 0.56 | 1.00 | |||
dp (nm) | 0.97 | 0.71 | 0.71 | 0.94 | 1.00 | ||
Ra (nm) | 0.99 | 0.55 | 0.87 | 0.85 | 0.95 | 1.00 | |
δapp (nm) | 0.50 | 0.87 | 0.08 | 0.67 | 0.65 | 0.54 | 1.00 |
2# | c(TMC) (%) | A (L·m−2·h−1·Bar−1) | Bs (L·m−2·h−1) | δint (nm) | Ra (nm) | dp (nm) | δapp (nm) |
---|---|---|---|---|---|---|---|
c(TMC) (%) | 1.00 | ||||||
A (L·m−2·h−1·bar−1) | −0.84 | 1.00 | |||||
Bs (L·m−2·h−1) | −0.48 | 0.64 | 1.00 | ||||
δint (nm) | 0.90 | −0.96 | −0.76 | 1.00 | |||
Ra (nm) | −0.68 | 0.96 | 0.58 | −0.86 | 1.00 | ||
dp (nm) | −0.80 | 0.82 | 0.89 | −0.94 | 0.69 | 1.00 | |
δapp (nm) | 0.45 | −0.76 | −0.85 | 0.73 | −0.80 | −0.72 | 1.00 |
3# | c(MPD) (%) | c(TMC) (%) | A (L·m−2·h−1·Bar−1) | Bs (L·m−2·h−1) | δint (nm) | Ra (nm) | dp (nm) | δapp (nm) |
---|---|---|---|---|---|---|---|---|
c(MPD) (%) | 1.00 | |||||||
c(TMC) (%) | 1.00 | 1.00 | ||||||
A (L·m−2·h−1·bar−1) | −0.94 | −0.94 | 1.00 | |||||
Bs (L·m−2·h−1) | −0.49 | −0.50 | 0.72 | 1.00 | ||||
δint (nm) | 0.72 | 0.72 | −0.91 | −0.82 | 1.00 | |||
Ra (nm) | 0.55 | 0.54 | −0.45 | −0.50 | 0.24 | 1.00 | ||
dp (nm) | 0.15 | 0.16 | −0.48 | −0.86 | 0.72 | 0.01 | 1.00 | |
δapp (nm) | 0.91 | 0.91 | −0.88 | −0.54 | 0.67 | 0.40 | 0.33 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Hu, X.; Peng, L.; Zhou, S.; Zhou, Y.; Xie, S.; Song, X.; Gao, C. The Intrinsic Parameters of the Polyamide Nanofilm in Thin-Film Composite Reverse Osmosis (TFC-RO) Membranes: The Impact of Monomer Concentration. Membranes 2022, 12, 417. https://doi.org/10.3390/membranes12040417
Zhang M, Hu X, Peng L, Zhou S, Zhou Y, Xie S, Song X, Gao C. The Intrinsic Parameters of the Polyamide Nanofilm in Thin-Film Composite Reverse Osmosis (TFC-RO) Membranes: The Impact of Monomer Concentration. Membranes. 2022; 12(4):417. https://doi.org/10.3390/membranes12040417
Chicago/Turabian StyleZhang, Mengling, Xiangyang Hu, Lei Peng, Shilin Zhou, Yong Zhou, Shijie Xie, Xiaoxiao Song, and Congjie Gao. 2022. "The Intrinsic Parameters of the Polyamide Nanofilm in Thin-Film Composite Reverse Osmosis (TFC-RO) Membranes: The Impact of Monomer Concentration" Membranes 12, no. 4: 417. https://doi.org/10.3390/membranes12040417
APA StyleZhang, M., Hu, X., Peng, L., Zhou, S., Zhou, Y., Xie, S., Song, X., & Gao, C. (2022). The Intrinsic Parameters of the Polyamide Nanofilm in Thin-Film Composite Reverse Osmosis (TFC-RO) Membranes: The Impact of Monomer Concentration. Membranes, 12(4), 417. https://doi.org/10.3390/membranes12040417