A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Formulation
2.1.1. In-Plane Fluidity
2.1.2. Gauge-Fixing Procedure
2.2. Lagrangian Particle Formulation
Weak Form
2.3. Loop Subdivision Finite Element Method for Thin Shells
2.4. Search Algorithm
Algorithm 1 Hash table algorithm. |
|
3. Results and Discussion
4. Conclusions and Future Applications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Ray-Triangle Intersection Algorithm
References
- Dharmavaram, S.; She, S.B.; Lázaro, G.; Hagan, M.F.; Bruinsma, R. Gaussian curvature and the budding kinetics of enveloped viruses. PLoS Comput. Biol. 2019, 15, e1006602. [Google Scholar] [CrossRef] [PubMed]
- Oh, N.; Park, J.H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed. 2014, 9, 51. [Google Scholar]
- Vitelli, V.; Lucks, J.B.; Nelson, D.R. Crystallography on curved surfaces. Proc. Natl. Acad. Sci. USA 2006, 103, 12323–12328. [Google Scholar] [CrossRef]
- Šarić, A.; Cacciuto, A. Self-assembly of nanoparticles adsorbed on fluid and elastic membranes. Soft Matter 2013, 9, 6677–6695. [Google Scholar] [CrossRef]
- Bradley, L.C.; Chen, W.H.; Stebe, K.J.; Lee, D. Janus and patchy colloids at fluid interfaces. Curr. Opin. Colloid Interface Sci. 2017, 30, 25–33. [Google Scholar] [CrossRef]
- Brant, J.A.; Childress, A.E. Colloidal adhesion to hydrophilic membrane surfaces. J. Membr. Sci. 2004, 241, 235–248. [Google Scholar] [CrossRef]
- Dubertret, B.; Heine, T.; Terrones, M. The rise of two-dimensional materials. Accounts Chem. Res. 2015, 48, 1–2. [Google Scholar] [CrossRef]
- Wood, M. Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications. J. R. Soc. Interface 2007, 4, 1–17. [Google Scholar] [CrossRef]
- Colson, P.; Henrist, C.; Cloots, R. Nanosphere lithography: A powerful method for the controlled manufacturing of nanomaterials. J. Nanomater. 2013, 2013, 21. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Lai, Y.; Chi, L. Advanced colloidal lithography: From patterning to applications. Nano Today 2018, 22, 36–61. [Google Scholar] [CrossRef]
- Irvine, W.T.; Vitelli, V.; Chaikin, P.M. Pleats in crystals on curved surfaces. Nature 2010, 468, 947. [Google Scholar] [PubMed]
- Irvine, W.T.; Bowick, M.J.; Chaikin, P.M. Fractionalization of interstitials in curved colloidal crystals. Nat. Mater. 2012, 11, 948. [Google Scholar] [PubMed]
- García, N.A.; Register, R.A.; Vega, D.A.; Gómez, L.R. Crystallization dynamics on curved surfaces. Phys. Rev. E 2013, 88, 012306. [Google Scholar] [CrossRef]
- Meng, G.; Paulose, J.; Nelson, D.R.; Manoharan, V.N. Elastic instability of a crystal growing on a curved surface. Science 2014, 343, 634–637. [Google Scholar] [CrossRef]
- Manoharan, V.N. Colloidal matter: Packing, geometry, and entropy. Science 2015, 349, 1253751. [Google Scholar] [CrossRef]
- Brojan, M.; Terwagne, D.; Lagrange, R.; Reis, P.M. Wrinkling crystallography on spherical surfaces. Proc. Natl. Acad. Sci. USA 2015, 112, 14–19. [Google Scholar]
- Stoop, N.; Dunkel, J. Defect formation dynamics in curved elastic surface crystals. Soft Matter 2018, 14, 2329–2338. [Google Scholar] [CrossRef]
- Bausch, A.; Bowick, M.J.; Cacciuto, A.; Dinsmore, A.; Hsu, M.; Nelson, D.; Nikolaides, M.; Travesset, A.; Weitz, D. Grain boundary scars and spherical crystallography. Science 2003, 299, 1716–1718. [Google Scholar]
- Liu, I.B.; Sharifi-Mood, N.; Stebe, K.J. Capillary assembly of colloids: Interactions on planar and curved interfaces. Annu. Rev. Condens. Matter Phys. 2018, 9, 283–305. [Google Scholar]
- Soligno, G.; Dijkstra, M.; van Roij, R. Self-assembly of cubic colloidal particles at fluid–fluid interfaces by hexapolar capillary interactions. Soft Matter 2018, 14, 42–60. [Google Scholar] [CrossRef]
- Elliott, C.M.; Stinner, B. Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 2010, 229, 6585–6612. [Google Scholar] [CrossRef]
- Perotti, L.; Dharmavaram, S.; Klug, W.; Marian, J.; Rudnick, J.; Bruinsma, R. Useful scars: Physics of the capsids of archaeal viruses. Phys. Rev. E 2016, 94, 012404. [Google Scholar] [CrossRef]
- Singh, A.R.; Perotti, L.E.; Bruinsma, R.F.; Rudnick, J.; Klug, W.S. Ground state instabilities of protein shells are eliminated by buckling. Soft Matter 2017, 13, 8300–8308. [Google Scholar] [CrossRef]
- Dharmavaram, S.; Perotti, L.E. A Lagrangian formulation for interacting particles on a deformable medium. Comput. Methods Appl. Mech. Eng. 2020, 364, 112949. [Google Scholar] [CrossRef]
- Ma, L.; Klug, W.S. Viscous regularization and r-adaptive remeshing for finite element analysis of lipid membrane mechanics. J. Comput. Phys. 2008, 227, 5816–5835. [Google Scholar] [CrossRef]
- Feng, F.; Klug, W.S. Finite element modeling of lipid bilayer membranes. J. Comput. Phys. 2006, 220, 394–408. [Google Scholar] [CrossRef]
- Dharmavaram, S. A gauge-fixing procedure for spherical fluid membranes and application to computations. Comput. Methods Appl. Mech. Eng. 2021, 381, 113849. [Google Scholar] [CrossRef]
- Zhao, S.; Healey, T.; Li, Q. Direct computation of two-phase icosahedral equilibria of lipid bilayer vesicles. Comput. Methods Appl. Mech. Eng. 2017, 314, 164–179. [Google Scholar] [CrossRef]
- Deserno, M. Fluid Lipid Membranes–A Primer. 2007. Available online: http://www.cmu.edu/biolphys/deserno/pdf/membrane_theory.pdf (accessed on 24 August 2022).
- Rangamani, P.; Agrawal, A.; Mandadapu, K.K.; Oster, G.; Steigmann, D.J. Interaction between surface shape and intra-surface viscous flow on lipid membranes. Biomech. Model. Mechanobiol. 2013, 12, 833–845. [Google Scholar] [CrossRef]
- Rangarajan, R.; Gao, H. A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications. J. Comput. Phys. 2015, 297, 266–294. [Google Scholar] [CrossRef]
- Baumgart, T.; Hess, S.T.; Webb, W.W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 2003, 425, 821–824. [Google Scholar] [CrossRef]
- Cirak, F.; Ortiz, M.; Schröder, P. Subdivision surfaces: A new paradigm for thin-shell finite-element analysis. Int. J. Numer. Methods Eng. 2000, 47, 2039–2072. [Google Scholar] [CrossRef]
- Loop, C. Smooth Subdivision Surfaces Based on Triangles. Ph.D. Thesis, University of Utah, Salt Lake City, UT, USA, 1987. [Google Scholar]
- Stam, J. Evaluation of loop subdivision surfaces. In Proceedings of the SIGGRAPH’98 CDROM Proceedings, Orlando, FL, USA, 19–24 July 1998. [Google Scholar]
- Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Für Naturforschung C 1973, 28, 693–703. [Google Scholar] [CrossRef]
- Jenkins, J. Static equilibrium of configurations of a model red blood cell membrane. Biophys. J. 1973, 13, 926–939. [Google Scholar]
- Capovilla, R.; Guven, J.; Santiago, J. Deformations of the geometry of lipid vesicles. J. Phys. A Math. Gen. 2003, 36, 6281. [Google Scholar] [CrossRef]
- Elliott, C.M.; Stinner, B. Computation of Two-Phase Biomembranes with Phase Dependent Material Parameters Using Surface Finite Elements. Commun. Comput. Phys 2013, 13, 325–336. [Google Scholar] [CrossRef]
- Healey, T.J.; Dharmavaram, S. Symmetry-breaking global bifurcation in a surface continuum phase-field model for lipid bilayer vesicles. SIAM J. Math. Anal. 2017, 49, 1027–1059. [Google Scholar] [CrossRef]
- Steigmann, D.; Baesu, E.; Rudd, R.E.; Belak, J.; McElfresh, M. On the variational theory of cell-membrane equilibria. Interfaces Free Bound. 2003, 5, 357–366. [Google Scholar] [CrossRef]
- Arnold, D.N.; Rogness, J. Möbius Transformations Revealed. Notes AMS 2008, 55, 1226–1231. [Google Scholar]
- Gu, X.; Wang, Y.; Chan, T.F.; Thompson, P.M.; Yau, S.T. Genus Zero Surface Conformal Mapping and Application to Brain Sufrace Mapping. IEEE Trans. Med Imaging 2004, 23, 949–958. [Google Scholar] [CrossRef]
- Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 1997, 23, 550–560. [Google Scholar] [CrossRef]
- Stam, J. Exact Evaluation of Subdivision Surfaces. Available online: https://www.dgp.toronto.edu/~stam/reality/Research/SubdivEval/ (accessed on 24 August 2022).
- Glasser, L.; Every, A. Energies and spacings of point charges on a sphere. J. Phys. A Math. Gen. 1992, 25, 2473. [Google Scholar] [CrossRef]
- Puig-de Morales-Marinkovic, M.; Turner, K.T.; Butler, J.P.; Fredberg, J.J.; Suresh, S. Viscoelasticity of the human red blood cell. Am. J. Physiol.-Cell Physiol. 2007, 293, C597–C605. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, M.; Arroyo, M. Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes. Phys. Rev. E 2012, 86, 011932. [Google Scholar] [CrossRef]
- Lin, Y.; Inamdar, M.; Freund, L. The competition between Brownian motion and adhesion in soft materials. J. Mech. Phys. Solids 2008, 56, 241–250. [Google Scholar] [CrossRef]
- Michalet, X.; Bensimon, D.; Fourcade, B. Fluctuating vesicles of nonspherical topology. Phys. Rev. Lett. 1994, 72, 168. [Google Scholar] [CrossRef]
- Möller, T.; Trumbore, B. Fast, minimum storage ray-triangle intersection. J. Graph. Tools 1997, 2, 21–28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dharmavaram, S.; Wan, X.; Perotti, L.E. A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes. Membranes 2022, 12, 960. https://doi.org/10.3390/membranes12100960
Dharmavaram S, Wan X, Perotti LE. A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes. Membranes. 2022; 12(10):960. https://doi.org/10.3390/membranes12100960
Chicago/Turabian StyleDharmavaram, Sanjay, Xinran Wan, and Luigi E. Perotti. 2022. "A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes" Membranes 12, no. 10: 960. https://doi.org/10.3390/membranes12100960
APA StyleDharmavaram, S., Wan, X., & Perotti, L. E. (2022). A Lagrangian Thin-Shell Finite Element Method for Interacting Particles on Fluid Membranes. Membranes, 12(10), 960. https://doi.org/10.3390/membranes12100960