[EMIM][Tf2N]-Modified Silica as Filler in Mixed Matrix Membrane for Carbon Dioxide Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Silica Particle Synthesis
2.3. IL-Modified Silica Preparation
2.4. Membrane Preparation
2.5. Characterization
2.6. Gas Permeation Test
3. Results
3.1. Silica and Silica-IL Characterization
3.2. Membrane Characterization
3.3. Gas Permeation Test
3.3.1. Effect of Sil-IL and Its Loading
3.3.2. Effect of Pressure
3.3.3. Comparison with Robeson Upper Bound
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nik, O.G.; Chen, X.Y.; Kaliaguine, S. Amine-functionalized zeolite FAU/EMT-polyimide mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 2011, 379, 468–478. [Google Scholar] [CrossRef]
- Anson, M.; Marchese, J.; Garis, E.; Ochoa, N.; Pagliero, C. ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation. J. Membr. Sci. 2004, 243, 19–28. [Google Scholar] [CrossRef]
- Nordin, N.A.H.M.; Ismail, A.F.; Mustafa, A.; Murali, R.S.; Matsuura, T. The impact of ZIF-8 particle size and heat treatment on CO2/CH4separation using asymmetric mixed matrix membrane. RSC Adv. 2014, 4, 52530–52541. [Google Scholar] [CrossRef]
- Nordin, N.A.H.M.; Racha, S.M.; Matsuura, T.; Misdan, N.; Sani, N.A.A.; Ismail, A.F.; Mustafa, A. Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: Synthesis and preparation. RSC Adv. 2015, 5, 43110–43120. [Google Scholar] [CrossRef]
- Ismail, N.; Ismail, A.; Mustafa, A.; Zulhairun, A.; Nordin, N. Enhanced carbon dioxide separation by polyethersulfone (PES) mixed matrix membranes deposited with clay. J. Polym. Eng. 2016, 36, 65–78. [Google Scholar] [CrossRef]
- Rezakazemi, M.; Amooghin, A.E.; Montazer-Rahmati, M.M.; Ismail, A.F.; Matsuura, T. State-of-the-art membrane based CO2separation usingmixed matrix membranes (MMMs): An overview on currentstatus and future directions. Prog. Polym. Sci. 2014, 39, 817–861. [Google Scholar] [CrossRef]
- IDris, A.; Man, Z.; Maulud, A.S. Polycarbonate/silica nanocomposite membranes: Fabrica-tion, characterization, and performance evaluation. J. Appl. Polym. Sci. 2017, 134, 45310. [Google Scholar] [CrossRef]
- Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A.A.; Pérez, A.; Rana, M.S. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Sep. Purif. Technol. 2017, 188, 431–450. [Google Scholar] [CrossRef]
- Xudong, H.; Cong, H.; Youqing, S.; Maciej, R. Nanocomposite Membranes for CO2 Separations: Silica/Brominated Poly(phenylene oxide). Ind. Eng. Chem. Res. 2007, 46, 1547–1551. [Google Scholar]
- Pinnau, I.; He, Z. Filled Superglassy Membrane. U.S. Patent US6316684B1, 01 1999. [Google Scholar]
- Ahn, J.; Chung, W.-J.; Pinnau, I.; Guiver, M.D. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 2008, 314, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Gorji, B.; Ghasri, M.A.; Fazaeli, R.; Niksirat, N. Synthesis and characterizations of silica nanoparticles by a new sol-gel method. J. Appl. Chem. Res. 2012, 6, 22–26. [Google Scholar]
- ŚLusarski, J.C.a.L. Synthesis of nanosilica by the sol-gel method and its activity toward polymers. Mater. Sci. 2003, 21, 461–469. [Google Scholar]
- Rahman, I.; Padavettan, V. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review. J. Nanomater. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Baldan, A. Adhesion phenomena in bonded joints. Int. J. Adhes. Adhes. 2012, 38, 95–116. [Google Scholar] [CrossRef]
- Guiver, M.D.; Robertson, G.P.; Dai, Y.; Kang, Y.S.; Lee, K.J.; Jho, J.Y.; Won, J. Structural characterization and gas-transport properties of brominated matrimid polyimide. J. Polym. Sci. Part A Polym. Chem. 2002, 40, 4193–4204. [Google Scholar] [CrossRef]
- Nik, O.G.; Nohair, B.; Kaliaguine, S. Aminosilanes grafting on FAU/EMT zeolite: Effect on CO2 adsorptive properties. Microporous Mesoporous Mater. 2011, 143, 221–229. [Google Scholar] [CrossRef]
- Rezaei, F.; Lively, R.P.; Labreche, Y.; Chen, G.; Fan, Y.; Koros, W.J.; Jones, C.W. Aminosilane-Grafted Polymer/Silica Hollow Fiber Adsorbents for CO2 Capture from Flue Gas. ACS Appl. Mater. Interfaces 2013, 5, 3921–3931. [Google Scholar] [CrossRef]
- Zhang, J.; Xin, Q.; Li, X.; Yun, M.; Xu, R.; Wang, S.; Li, Y.; Lin, L.; Ding, X.; Ye, H.; et al. Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation. J. Membr. Sci. 2019, 570–571, 343–354. [Google Scholar] [CrossRef]
- Hudiono, Y.C.; Carlisle, T.K.; LaFrate, A.L.; Gin, D.L.; Noble, R.D. Novel mixed ma-trix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. J. Membr. Sci. 2011, 370, 141–148. [Google Scholar] [CrossRef]
- Li, H.; Tuo, L.; Yang, K.; Jeong, H.-K.; Dai, Y.; He, G.; Zhao, W. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid. J. Membr. Sci. 2016, 511, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, M.; Mandal, M.K. Synthesis and characterization of ionic liquid based mixed matrix membrane for acid gas separation. J. Clean. Prod. 2017, 156, 174–183. [Google Scholar] [CrossRef]
- Ahmad, N.; Leo, C.; Mohammad, A.; Ahmad, A. Modification of gas selective SAPO zeolites using imidazolium ionic liquid to develop polysulfone mixed matrix membrane for CO2 gas separation. Microporous Mesoporous Mater. 2017, 244, 21–30. [Google Scholar] [CrossRef]
- Buckley, A.M.; Greenbalt, M. The sol-gel preparation of silica gels. Chem. Educ. 1994, 71, 595–602. [Google Scholar] [CrossRef]
- Idris, A. Polycarbonate-Silica Nanocomposite Membranes for Carbon Dioxide Separation. In Chemical Engineering; Universiti Teknologi Petronas: Perak, Malaysia, 2018. [Google Scholar]
- Stojanović, D.B.; Brajović, L.; Orlović, A.; Dramlić, D.; Radmilović, V.; Uskoković, P.S.; Aleksić, R. Transparent PMMA/silica nanocomposites containing silica nanoparti-clescoating under supercritical conditions. Prog. Org. Coat. 2013, 76, 626–631. [Google Scholar] [CrossRef]
- Smiglak, M.; Esperanca, W.M.; Gilea, M.A.; Lopes, J.N.C.; Rebelo, L.P.; Magee, J.W.; Seddon, K.R.; Widegren, J.A. The distillation and vitality of ionic liquids. Nature 2006, 439, 831–834. [Google Scholar]
- Hanke, K.; Kaufmann, M.; Schwaab, G.; Havenith, M.; Wolke, C.T.; Gorlova, O.; Johnson, M.A.; Kar, B.P.; Sander, W.; Sachez-Garcia, E. Understanding the ionic liq-uid [NC4111][NTf2] from individual building blocks: An IR-spectroscopic study. R. Soc. Chem. 2015, 17, 8518–8529. [Google Scholar]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D. Spectrometric Identification of Organic Compounds, 7th ed.; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Mahmoud, M.E. Surface loaded 1-methyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM+Tf2N−] hydrophobic ionic liquid on nano-silica sorbents for removal of lead from water samples. Desalination 2011, 266, 119–127. [Google Scholar] [CrossRef]
- Tahir, Z.; Ilyas, A.; Li, X.; Bilad, M.R.; Vankelecom, I.F.J.; Khan, A.L. Tuning the Gas Separation Performance of Fluorinated and Sulfonated PEEK Membranes by Incorporation of Zeolite 4A. J. Appl. Polym. Sci. 2018, 135, 45952. [Google Scholar] [CrossRef]
- Şen, D.; Kalıpçılar, H.; Yılmaz, L. Gas Separation Performance of Polycarbonate Membranes Modified with Multifunctional Low Molecular-Weight Additives. Sep. Sci. Technol. 2006, 41, 1813–1828. [Google Scholar] [CrossRef]
- Finotello, A.; Bara, J.E.; Narayan, S.; Camper, D.; Noble, R.D. Ideal Gas Solubilities and Solubility Selectivities in a Binary Mixture of Room-Temperature Ionic Liquids. J. Phys. Chem. B 2008, 112, 2335–2339. [Google Scholar] [CrossRef]
- Mannan, H.A.; Mukhtar, H.; Shahrun, M.S.; Bustam, M.A.; Man, Z.; Bakar, M.Z.A. Synthesis, characterization, and CO2 separation performance of polyether sul-fone/[EMIM][Tf2N] ionic liquid-polymeric membranes (ILPMs). J. Ind. Eng. Chem. 2017, 54, 98–106. [Google Scholar] [CrossRef]
- Mohshim, D.F.; Mukhtar, H.; Man, Z. Composite blending of ionic liquid–poly(ethersulfone) polymeric membranes: Green materials with potential for carbon dioxide/methane separation. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Subramanian, S.; Heydweiller, J.C.; Stern, S.A. Dual-mode sorption kinetics of gases in glassy polymers. J. Polym. Sci. Part B Polym. Phys. 1989, 27, 1209–1220. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Comesaña-Gándara, B.; Chen, J.; Bezzu, C.G.; Carta, M.; Rose, I.; Ferrari, C.; Esposito, E.; Fuoco, A.; Jansen, J.c.; McKeown, N.B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of in-trinsic microporosity. Energy Environ. Sci. 2019, 12, 2733–2740. [Google Scholar] [CrossRef] [Green Version]
Sample Name | PC (wt%) | Solvent (wt%) | Sil (wt% of Total Solid) | Sil-IL (wt% of Total Solid) |
---|---|---|---|---|
PC | 20 | 80 | - | - |
1 PC-Sil | 20 | 80 | 1 | - |
2 PC-Sil | 20 | 80 | 2 | - |
3 PC-Sil | 20 | 80 | 3 | - |
1 PC-Sil-IL | 20 | 80 | - | 1 |
2 PC-Sil-IL | 20 | 80 | - | 2 |
3 PC-Sil-IL | 20 | 80 | - | 3 |
Sample | Element (wt%) | ||||
---|---|---|---|---|---|
Si | N | O | F | C | |
Pure Si | 34.03 | - | 65.97 | - | - |
Si-IL | 42.63 | 1.16 | 50.47 | 1.2 | 4.54 |
Sample | Tg (°C) | d (Å) |
---|---|---|
Pure PC | 144.4 | 4.91 |
1 PC-Sil | 142.1 | 4.93 |
2 PC-Sil | 143.9 | 4.83 |
3 PC-Sil | 143.3 | 4.68 |
1 PC-Sil-IL | 141.5 | 4.89 |
2 PC-Sil-IL | 143.8 | 4.79 |
3 PC-Sil-IL | 143.3 | 4.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shafie, S.N.A.; Md Nordin, N.A.H.; Bilad, M.R.; Misdan, N.; Sazali, N.; Putra, Z.A.; Wirzal, M.D.H.; Idris, A.; Jaafar, J.; Man, Z. [EMIM][Tf2N]-Modified Silica as Filler in Mixed Matrix Membrane for Carbon Dioxide Separation. Membranes 2021, 11, 371. https://doi.org/10.3390/membranes11050371
Shafie SNA, Md Nordin NAH, Bilad MR, Misdan N, Sazali N, Putra ZA, Wirzal MDH, Idris A, Jaafar J, Man Z. [EMIM][Tf2N]-Modified Silica as Filler in Mixed Matrix Membrane for Carbon Dioxide Separation. Membranes. 2021; 11(5):371. https://doi.org/10.3390/membranes11050371
Chicago/Turabian StyleShafie, Siti Nur Alwani, Nik Abdul Hadi Md Nordin, Muhammad Roil Bilad, Nurasyikin Misdan, Norazlianie Sazali, Zulfan Adi Putra, Mohd Dzul Hakim Wirzal, Alamin Idris, Juhana Jaafar, and Zakaria Man. 2021. "[EMIM][Tf2N]-Modified Silica as Filler in Mixed Matrix Membrane for Carbon Dioxide Separation" Membranes 11, no. 5: 371. https://doi.org/10.3390/membranes11050371
APA StyleShafie, S. N. A., Md Nordin, N. A. H., Bilad, M. R., Misdan, N., Sazali, N., Putra, Z. A., Wirzal, M. D. H., Idris, A., Jaafar, J., & Man, Z. (2021). [EMIM][Tf2N]-Modified Silica as Filler in Mixed Matrix Membrane for Carbon Dioxide Separation. Membranes, 11(5), 371. https://doi.org/10.3390/membranes11050371