Impact of Circulating Anti-Spike Protein Antibody Levels on Multi-Organ Long COVID Symptoms
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Clinical and Laboratory Data
2.3. Hypothesis and Aims
2.4. Statistical Analyses
3. Results
3.1. Vaccination Status and Long COVID Symptoms
3.2. Time-Dependent Decrease in Levels of Circulating SARS-CoV-2 Anti-Spike Protein Antibodies in the Two Groups
3.3. Determination of a Cutoff Value for Anti-Spike Protein Antibody Characterizing Vaccinated versus Unvaccinated Patients
3.4. Subgroup Analysis of Patients with Low versus High Anti-Spike Protein Antibody Levels
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vos, T.; Hanson, S.W.; Abbafati, C.; Aerts, J.G.; Al-Aly, Z.; Ashbaugh, C.; Ballouz, T.; Blyuss, O.; Bobkova, P.; Bonsel, G.; et al. Estimated Global Proportions of Individuals with Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA 2022, 328, 1604–1615. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-las-Peñas, C.; Cancela-Cilleruelo, I.; Rodríguez-Jiménez, J.; Fuensalida-Novo, S.; Martín-Guerrero, J.D.; Pellicer-Valero, O.J.; de-la-Llave-Rincón, A.I. Trajectory of Post-COVID Self-Reported Fatigue and Dyspnoea in Individuals Who Had Been Hospitalized by COVID-19: The LONG-COVID-EXP Multicenter Study. Biomedicines 2023, 11, 1863. [Google Scholar] [CrossRef] [PubMed]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long Covid—Mechanisms, Risk Factors, and Management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and Predictors of Long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Dennis, A.; Wamil, M.; Alberts, J.; Oben, J.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Brady, M.; Hishmeh, L.; et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: A prospective, community-based study. BMJ Open 2021, 11, 3048391. [Google Scholar] [CrossRef] [PubMed]
- Ledford, H. Do Vaccines Protect against Long COVID? What the Data Say. Nature 2021, 599, 546–548. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, A.; Iwagami, M.; Yasuhara, J.; Takagi, H.; Kuno, T. Protective Effect of COVID-19 Vaccination against Long COVID Syndrome: A Systematic Review and Meta-Analysis. Vaccine 2023, 41, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Azzolini, E.; Levi, R.; Sarti, R.; Pozzi, C.; Mollura, M.; Mantovani, A.; Rescigno, M. Association between BNT162b2 Vaccination and Long COVID after Infections Not Requiring Hospitalization in Health Care Workers. JAMA 2022, 328, 676–678. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Bowe, B.; Xie, Y. Long COVID after Breakthrough SARS-CoV-2 Infection. Nat. Med. 2022, 28, 1461–1467. [Google Scholar] [CrossRef]
- Ayoubkhani, D.; Bermingham, C.; Pouwels, K.B.; Glickman, M.; Nafilyan, V.; Zaccardi, F.; Khunti, K.; Alwan, N.A.; Walker, A.S. Trajectory of Long Covid Symptoms after Covid-19 Vaccination: Community Based Cohort Study. BMJ 2022, 377, e069676. [Google Scholar] [CrossRef] [PubMed]
- Strain, W.D.; Sherwood, O.; Banerjee, A.; Van der Togt, V.; Hishmeh, L.; Rossman, J. The Impact of COVID Vaccination on Symptoms of Long COVID: An International Survey of People with Lived Experience of Long COVID. Vaccines 2022, 10, 652. [Google Scholar] [CrossRef] [PubMed]
- Varnai, R.; Molnar, T.; Zavori, L.; Tőkés-Füzesi, M.; Illes, Z.; Kanizsai, A.; Csecsei, P. Serum Level of Anti-Nucleocapsid, but Not Anti-Spike Antibody, Is Associated with Improvement of Long COVID Symptoms. Vaccines 2022, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Wynberg, E.; Han, A.X.; Boyd, A.; van Willigen, H.D.G.; Verveen, A.; Lebbink, R.; van der Straten, K.; Kootstra, N.; van Gils, M.J.; Russell, C.; et al. The Effect of SARS-CoV-2 Vaccination on Post-Acute Sequelae of COVID-19 (PASC): A Prospective Cohort Study. Vaccine 2022, 40, 4424–4431. [Google Scholar] [CrossRef]
- Gyöngyösi, M.; Lukovic, D.; Mester-Tonczar, J.; Zlabinger, K.; Einzinger, P.; Spannbauer, A.; Schweiger, V.; Schefberger, K.; Samaha, E.; Bergler-Klein, J.; et al. Effect of Monovalent COVID-19 Vaccines on Viral Interference between SARS-CoV-2 and Several DNA Viruses in Patients with Long-COVID Syndrome. NPJ Vaccines 2023, 8, 145. [Google Scholar] [CrossRef] [PubMed]
- Hayes, L.D.; Ingram, J.; Sculthorpe, N.F. More Than 100 Persistent Symptoms of SARS-CoV-2 (Long COVID): A Scoping Review. Front. Med. 2021, 8, 750378. [Google Scholar] [CrossRef]
- Munblit, D.; Nicholson, T.; Akrami, A.; Apfelbacher, C.; Chen, J.; De Groote, W.; Diaz, J.V.; Gorst, S.L.; Harman, N.; Kokorina, A.; et al. A Core Outcome Set for Post-COVID-19 Condition in Adults for Use in Clinical Practice and Research: An International Delphi Consensus Study. Lancet Respir. Med. 2022, 10, 715–724. [Google Scholar] [CrossRef]
- Parotto, M.; Gyöngyösi, M.; Howe, K.; Myatra, S.N.; Ranzani, O.; Shankar-Hari, M.; Herridge, M.S. Post-Acute Sequelae of COVID-19: Understanding and Addressing the Burden of Multisystem Manifestations. Lancet Respir. Med. 2023, 11, 739–754. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Liu, J.; Liu, M. Effect of COVID-19 Vaccines on Reducing the Risk of Long COVID in the Real World: A Systematic Review and Meta-Analysis. Int. J. Env. Res. Public Health 2022, 19, 12422. [Google Scholar] [CrossRef]
- Notarte, K.I.; Catahay, J.A.; Velasco, J.V.; Pastrana, A.; Ver, A.T.; Pangilinan, F.C.; Peligro, P.J.; Casimiro, M.; Guerrero, J.J.; Gellaco, M.M.L.; et al. Impact of COVID-19 Vaccination on the Risk of Developing Long-COVID and on Existing Long-COVID Symptoms: A Systematic Review. EClinicalMedicine 2022, 53, 101624. [Google Scholar] [CrossRef]
- Desimmie, B.A.; Raru, Y.Y.; Awadh, H.M.; He, P.; Teka, S.; Willenburg, K.S. Insights into SARS-CoV-2 Persistence and Its Relevance. Viruses 2021, 13, 1025. [Google Scholar] [CrossRef] [PubMed]
- Scherlinger, M.; Pijnenburg, L.; Chatelus, E.; Arnaud, L.; Gottenberg, J.E.; Sibilia, J.; Felten, R. Effect of SARS-CoV-2 Vaccination on Symptoms from Post-Acute Sequelae of COVID-19: Results from the Nationwide VAXILONG Study. Vaccines 2021, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Sigfrid, L.; Drake, T.M.; Pauley, E.; Jesudason, E.C.; Olliaro, P.; Lim, W.S.; Gillesen, A.; Berry, C.; Lowe, D.J.; McPeake, J.; et al. Long Covid in Adults Discharged from UK Hospitals after COVID-19: A Prospective, Multicentre Cohort Study Using the ISARIC WHO Clinical Characterisation Protocol. Lancet Reg. Health Eur. 2021, 8, 100186. [Google Scholar] [CrossRef] [PubMed]
- Cervia, C.; Zurbuchen, Y.; Taeschler, P.; Ballouz, T.; Menges, D.; Hasler, S.; Adamo, S.; Raeber, M.E.; Bächli, E.; Rudiger, A.; et al. Immunoglobulin Signature Predicts Risk of Post-Acute COVID-19 Syndrome. Nat. Commun. 2022, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sonnweber, T.; Tymoszuk, P.; Sahanic, S.; Boehm, A.; Pizzini, A.; Luger, A.; Schwabl, C.; Nairz, M.; Grubwieser, P.; Kurz, K.; et al. Investigating Phenotypes of Pulmonary COVID-19 Recovery: A Longitudinal Observational Prospective Multicenter Trial. Elife 2022, 11, e72500. [Google Scholar] [CrossRef] [PubMed]
- Molnar, T.; Varnai, R.; Schranz, D.; Zavori, L.; Peterfi, Z.; Sipos, D.; Tőkés-füzesi, M.; Illes, Z.; Buki, A.; Csecsei, P. Severe Fatigue and Memory Impairment Are Associated with Lower Serum Level of Anti-SARS-CoV-2 Antibodies in Patients with Post-COVID Symptoms. J. Clin. Med. 2021, 10, 4337. [Google Scholar] [CrossRef]
- Blomberg, B.; Mohn, K.G.I.; Brokstad, K.A.; Zhou, F.; Linchausen, D.W.; Hansen, B.A.; Lartey, S.; Onyango, T.B.; Kuwelker, K.; Sævik, M.; et al. Long COVID in a Prospective Cohort of Home-Isolated Patients. Nat. Med. 2021, 27, 1607. [Google Scholar] [CrossRef]
Variable | Total n = 198 | Vaccinated n = 138 | Unvaccinated n = 60 | p-Value |
---|---|---|---|---|
Age (years) | 45.1 ± 14.2 | 45.5 ± 14.7 | 44.3 ± 13.2 | 0.603 |
Female (%) | 139 (70.2) | 96 (69.6) | 43 (71.7) | 0.766 |
BMI (kg/m2) | 25.3 ± 5.2 | 24.9 ± 4.9 | 26.2 ± 5.8 | 0.165 |
Hypertension (%) | 73 (36.9) | 53 (38.4) | 20 (33.3) | 0.497 |
Diabetes mellitus (%) | 8 (4.0) | 7 (5.1) | 2 (1.7) | 0.263 |
Hyperlipidemia (%) | 55 (27.8) | 38 (27.5) | 17 (28.3) | 0.908 |
Family history for CVD (%) | 29 (14.6) | 21 (15.2) | 8 (13.3) | 0.730 |
Symptom Class (%) | 0.014 | |||
I | 88 (44.4) | 69 (50.0) | 19 (31.7) | |
II | 82 (41.4) | 55 (39.9) | 27 (45.0) | |
III | 28 (14.1) | 14 (10.1) | 14 (23.3) | |
Anti-SARS-CoV2-spike (BAU/mL) | 1487 ± 1109 | 1925 ± 938 | 481 ± 768 | <0.001 |
Days from infection to blood sampling (d) | 246 ± 152 | 269 ± 151 | 193 ± 140 | 0.001 |
Days from infection to vaccination (d) | 110 ± 167 | |||
Vaccine prior to infection (%) | 23 (11.6) | 23 (16.7) | 0 (0) | - |
Vaccine doses (%) | <0.001 | |||
0 | 60 (30.3) | 0 (0.0) | 60 (100) | |
1 | 43 (21.7) | 43 (31.2) | ||
2 | 57 (28.8) | 57 (41.3) | ||
3 | 34 (17.2) | 34 (24.6) | ||
4 | 4 (2.0) | 4 (2.9) | ||
First vaccine type (%) | - | |||
AstraZeneca | 20 (10.1) | 20 (14.5) | ||
Janssen | 2 (1.0) | 2 (1.4) | ||
Moderna | 12 (6.1) | 12 (8.7) | ||
Pfizer-BioNTech | 104 (52.5) | 104 (74.4) | ||
NT-proBNP (mg/dL) | 89.1 ± 164 | 94.8 ± 184.5 | 76.4 ± 104.4 | 0.425 |
CRP (µg/mL) | 0.2 ± 0.3 | 0.2 ± 0.32 | 0.21 ± 0.28 | 0.668 |
TSH (mIU/L) | 1.52 ± 0.81 | 1.53 ± 0.83 | 1.49 ± 0.78 | 0.812 |
IgG (mg/dL) | 1126 ± 300 | 1104 ± 239 | 1177 ± 404 | 0.115 |
Cholesterol (mg/dL) | 199 ± 42 | 197 ± 42 | 202 ± 41 | 0.527 |
Triglycerides (mg/dL) | 115.65 ± 78.15 | 108 ± 71 | 134 ± 91 | 0.122 |
Lp(a) (mg/dL) | 49 ± 75 | 55 ± 82 | 36 ± 53 | 0.346 |
CK (U/L) | 99 ± 58 | 96 ± 51 | 106 ± 72 | 0.801 |
Procalcitonin (ng/mL) | 0.03 ± 0.03 | 0.03 ± 0.02 | 0.03 ± 0.03 | 0.930 |
Ferritin (ng/mL) | 118 ± 122 | 122 ± 125 | 111 ± 116 | 0.250 |
D-Dimer (mg/L FEU) | 0.27 ± 0.38 | 0.31 ± 0.42 | 0.18 ± 0.21 | 0.086 |
IgA (mg/dL) | 207 ± 100 | 204 ± 101 | 217 ± 97 | 0.348 |
Fibrinogen (mg/dL) | 319 ± 67 | 320 ± 69 | 318 ± 63 | 0.964 |
aPTT (s) | 35.3 ± 3.6 | 35.4 ± 3.7 | 35.1 ± 3.5 | 0.947 |
Thrombocytes (/nL) | 261 ± 54 | 260 ± 56 | 262 ± 50 | 0.816 |
Hemoglobin (g/dL) | 14.35 ± 2.36 | 14.4 ± 2.55 | 14.24 ± 1.92 | 0.945 |
Variable | Low Anti-Spike Level (<665.5 BAU/mL) n = 73 | High Anti-Spike Level (≥665.5 BAU/mL) n = 125 | p-Value |
---|---|---|---|
Vaccinated (%) | 27 (37.0) | 111 (88.8) | <0.001 |
Female (%) | 53 (72.6) | 86 (68.8) | 0.572 |
Hypertension (%) | 26 (35.6) | 47 (37.6) | 0.780 |
Diabetes mellitus (%) | 1 (1.4) | 7 (5.6) | 0.145 |
Hyperlipidemia (%) | 18 (24.7) | 37 (29.6) | 0.454 |
Family history for CVD (%) | 8 (11.0) | 21 (16.8) | 0.262 |
Symptom Class (%) | 0.042 | ||
I | 24 (32.9) | 64 (51.2) | |
II | 36 (49.3) | 46 (36.8) | |
III | 13 (17.8) | 15 (12.0) | |
Vaccination (%) | 0 | 0 | <0.001 |
before COVID-19 | 3 (4.1) | 20 (16.0) | |
after COVID-19 | 24 (32.9) | 91 (72.8) | |
Vaccine doses (%) | <0.001 | ||
0 | 46 (63.0) | 14 (11.2) | |
1 | 11 (15.1) | 32 (25.6) | |
2 | 11 (15.2) | 46 (36.8) | |
3 | 5 (6.8) | 29 (23.2) | |
4 | 0 (0.0) | 4 (3.2) | |
First vaccine type (%) | 4 (5.5) | 16 (12.8) | - |
Astra Zeneca | 0 (0) | 2 (1.6) | |
Janssen | 1 (1.4) | 11 (8.8) | |
Moderna | 22 (30.1) | 82 (65.6) | |
Pfizer-BioNTech | 46 (63.0) | 14 (11.2) | |
SARS-CoV-2 anti-spike (BAU/mL) | 146 ± 166 | 2270 ± 514 | <0.001 |
Age (y) | 44.0 ± 13.8 | 45.8 ± 14.4 | 0.399 |
BMI (kg/m2) | 24.9 ± 5.03 | 25.5 ± 5.24 | 0.496 |
Days from infection (d) | 189 ± 140 | 280 ± 149 | <0.001 |
NT-proBNP (mg/dL) | 73 ± 96.3 | 98.8 ± 193.3 | 0.198 |
CRP (µg/mL) | 0.22 ± 0.31 | 0.19 ± 0.3 | 0.573 |
TSH (mIU/L) | 1.47 ± 0.71 | 1.54±0.87 | 0.555 |
IgG (mg/dL) | 1116 ± 232 | 1132 ± 334 | 0.712 |
Cholesterol (mg/dL) | 201 ± 42 | 197 ± 42 | 0.445 |
Triglycerides (mg/dL) | 117 ± 76 | 115 ± 80 | 0.669 |
Lp(a) (mg/dL) | 36.1 ± 56.2 | 56.7 ± 84.0 | 0.448 |
CK (U/L) | 96.6 ± 67.9 | 100.7 ± 51.2 | 0.063 |
Procalcitonin (ng/mL) | 0.03 ± 0.03 | 0.03 ± 0.02 | 0.774 |
Ferritin (ng/mL) | 145 ±164 | 102 ± 86 | 0.236 |
D-Dimer (mg/L FEU) | 0.24±0.29 | 0.29±0.41 | 0.796 |
IgA (mg/dL) | 209 ± 90 | 207 ± 106 | 0.685 |
Fibrinogen (mg/dL) | 318.4 ± 65.2 | 319.5 ± 68,4 | 0.982 |
aPTT (s) | 35.1 ± 3.8 | 35.4 ± 3.5 | 0.754 |
Thrombocytes (/nL) | 258 ± 52 | 261 ± 55 | 0.674 |
Hemoglobin (g/dL) | 14.19 ± 1.79 | 14.44 ± 2.65 | 0.737 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamzaraj, K.; Han, E.; Hasimbegovic, E.; Poschenreiter, L.; Vavrikova, A.; Lukovic, D.; Kastrati, L.; Bergler-Klein, J.; Gyöngyösi, M. Impact of Circulating Anti-Spike Protein Antibody Levels on Multi-Organ Long COVID Symptoms. Vaccines 2024, 12, 610. https://doi.org/10.3390/vaccines12060610
Hamzaraj K, Han E, Hasimbegovic E, Poschenreiter L, Vavrikova A, Lukovic D, Kastrati L, Bergler-Klein J, Gyöngyösi M. Impact of Circulating Anti-Spike Protein Antibody Levels on Multi-Organ Long COVID Symptoms. Vaccines. 2024; 12(6):610. https://doi.org/10.3390/vaccines12060610
Chicago/Turabian StyleHamzaraj, Kevin, Emilie Han, Ena Hasimbegovic, Laura Poschenreiter, Anja Vavrikova, Dominika Lukovic, Lisbona Kastrati, Jutta Bergler-Klein, and Mariann Gyöngyösi. 2024. "Impact of Circulating Anti-Spike Protein Antibody Levels on Multi-Organ Long COVID Symptoms" Vaccines 12, no. 6: 610. https://doi.org/10.3390/vaccines12060610
APA StyleHamzaraj, K., Han, E., Hasimbegovic, E., Poschenreiter, L., Vavrikova, A., Lukovic, D., Kastrati, L., Bergler-Klein, J., & Gyöngyösi, M. (2024). Impact of Circulating Anti-Spike Protein Antibody Levels on Multi-Organ Long COVID Symptoms. Vaccines, 12(6), 610. https://doi.org/10.3390/vaccines12060610