Next-Generation Sequencing: A Promising Tool for Vaccines and Other Biological Products
Conflicts of Interest
References
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Nasereddin, A.; Berman, H.G.; Wolf, D.G.; Oiknine-Djian, E.; Adar, S. Identification of SARS-CoV-2 Variants of concern using Amplicon Next-Generation Sequencing. Clin. Microbiol. 2022, 10, e00736-22. [Google Scholar] [CrossRef] [PubMed]
- Konz, J.O.; Schofield, T.; Carlyle, S.; Wahid, R.; Ansari, A.; Strating, J.R.P.M.; Te Yeh, M.; Manukyan, H.; Smits, S.L.; Tritama, E.; et al. Evaluation and validation of next-generation sequencing to support lot release for a novel type 2 oral polio vaccine. Vaccine X 2021, 11, 100102. [Google Scholar] [CrossRef] [PubMed]
- Kames, J.; Holcomb, D.D.; Kimchi, O.; DiCuccio, M.; Hamasaki-Katagiri, N.; Wang, T.; Komar, A.A.; Alexaki, A.; Kimchi-Sarfaty, C. Sequence analysis of SARS-CoV-2 genome reveals features important for vaccine design. Sci. Rep. 2020, 10, 15643. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.P.; Caro-Vegas, C.; Landis, J.T.; Moorad, R.; Pluta, L.J.; Eason, A.B.; Thompson, C.; Bailey, A.; Villamor, F.C.S.; Lange, P.T.; et al. High-density amplicon sequencing identifies community spread and ongoing evolution of SARS-CoV-2 in the Southern United States. Cell Rep. 2020, 33, 108352. [Google Scholar] [CrossRef] [PubMed]
- Quer, J.; Colomer-Castell, S.; Campos, C.; Andrés, C.; Piñana, M.; Cortese, M.F.; González-Sánchez, A.; Garcia-Cehic, D.; Ibáñez, M.; Pumarola, T.; et al. Next-Generation Sequencing for Confronting Virus Pandemics. Viruses 2022, 14, 600. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, E.M.; Jablons, D.; Kratz, J.R. Applications of Next-Generation Sequencing in Neoantigen Prediction and Cancer Vaccine Development. Genet. Test Mol. Biomark. 2020, 24, 59–66. [Google Scholar] [CrossRef]
- Alburquerque-González, B.; López-Abellán, M.D.; Luengo-Gil, G.; Montoro-García, S.; Conesa-Zamora, P. Design of personalized neoantigen RNA vaccines against cancer based on next-generation sequencing data. Methods Mol. Biol. 2022, 2547, 165–185. [Google Scholar] [PubMed]
- Gombold, J.; Karakasidis, S.; Niksa, P.; Podczasy, J.; Neumann, K.; Richardson, J.; Sane, N.; Johnson-Leva, R.; Randolph, V.; Sadoff, J.; et al. Systematic evaluation of in vitro and in vivo adventitious virus assays for the detection of viral contamination of cell banks and biological products. Vaccine 2014, 32, 2916–2926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallet, L.; Gisonni-Lex, L. Need for new technologies for detection of adventitious agents in vaccines and other biological products. PDA J. Pharm. Sci. Technol. 2014, 68, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.H.; Azizi, A.; Edamura, K.; Malott, R.J.; Charlebois, R.L.; Logvinoff, C.; Schreiber, M.; Mallet, L.; Gisonni-Lex, L. Preliminary Evaluation of Next-Generation Sequencing Performance Relative to qPCR and In Vitro Cell Culture Tests for Human Cytomegalovirus. PDA J. Pharm. Sci. Technol. 2014, 68, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Barone, P.W.; Keumurian, F.J.; Neufeld, C.; Koenigsberg, A.; Kiss, R.; Leung, J.; Wiebe, M.; Ait-Belkacem, R.; Azimpour Tabrizi, C.; Barbirato, C.; et al. Historical evaluation of the in vivo adventitious virus test and its potential for replacement with next generation sequencing (NGS). Biologicals 2023, 6, 101661. [Google Scholar] [CrossRef] [PubMed]
- ICH. Q5A (R2) Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Available online: https://www.fda.gov/media/163115/download (accessed on 20 February 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nellimarla, S.; Kesanakurti, P. Next-Generation Sequencing: A Promising Tool for Vaccines and Other Biological Products. Vaccines 2023, 11, 527. https://doi.org/10.3390/vaccines11030527
Nellimarla S, Kesanakurti P. Next-Generation Sequencing: A Promising Tool for Vaccines and Other Biological Products. Vaccines. 2023; 11(3):527. https://doi.org/10.3390/vaccines11030527
Chicago/Turabian StyleNellimarla, Srinivas, and Prasad Kesanakurti. 2023. "Next-Generation Sequencing: A Promising Tool for Vaccines and Other Biological Products" Vaccines 11, no. 3: 527. https://doi.org/10.3390/vaccines11030527