Betaine Dietary Supplementation: Healthy Aspects in Human and Animal Nutrition
Abstract
1. Introduction
2. Industrial Extraction of Betaine from Sugar Beet
3. Betaine: Chemical Characteristics and Nutritional Properties/Applications
4. Betaine in Human Nutrition
4.1. Betaine and Hepatic Function
4.2. Cardiovascular and Metabolic Benefits of Betaine Supplementation
4.3. Kidney Function and Osmoregulation
4.4. Performance, Body Mass Composition, Heat Tolerance and General Well-Being
5. Betaine in Monogastrics Nutrition
5.1. Swine
5.2. Poultry
Source | Dosage | Species | Main Effects 1 | Reference |
---|---|---|---|---|
Feed-grade betaine | 0.5 g/kg | Ducks, White Pekin, 1–41 days | BW, BMY | [98] |
Water-added betaine | 50, 100 g/kg | Broilers, Cobb, 1–42 days | RT, H/Lr | [124] |
Feed-grade betaine | 1 g/kg | Broilers, Cobb 500, 1–56 days | FCR, BMY | [108] |
Feed-grade betaine | 0.75, 1.5, 2.25 g/kg | Broilers, Ross 308, 1–42 days | BWG, FCR, Nd | [103] |
Feed-grade betaine | 0.06, 1.2 g/kg | Broilers, Ross 308, 1–42 days | RtC | [112] |
Feed-grade betaine | 0.8 g/kg | Broilers, Cobb 400, 1–42 days | BWG, Sbp | [125] |
Feed-grade betaine | 0.75, 1.5, 2.25 g/kg | Turkey, Bronze, 12–20 weeks | BWG, Sbp, CW, %D | [99] |
Feed-grade betaine | 1 g/kg | Laying hens, Mandarah, 32–48 weeks | BWG, EP, FI, FCR, Nd | [104] |
Feed-grade betaine | 0.7, 1, 1.3 g/kg | Ducks, NR, 1–42 days | BWG, FI, FCR, Bh, SCFA | [105] |
Feed-grade betaine | 1.2 g/kg | Ducks, Cherry Valley, 1–42 days | BW, FI, FE, Bh, SCFA | [117] |
Feed-grade betaine | 0.6, 12 g/kg | Japanese quails, 42–98 days | Nd, FI, EP, EW, FCR, EQ | [123] |
Betaine hydrochloride | 0.25 g/kg BW | Broilers, Ross, 1–42 days | Bh, ADG, FCR, FI, WI | [109] |
Feed-grade betaine | 1 g/kg | Broilers, Ross 308, 1–42 days | ADG, FCR, BMY, RR | [106] |
Anhydrous betaine | 0.5, 1, 2 g/kg | Broilers, Huaixiang, 1–28 days | BWG, FI, IH | [126] |
Anhydrous betaine | 1.2 g/kg | Laying quails, 23–27 weeks | Nd, FI, EP, EW, FCR, EQ | [100] |
Feed-grade betaine | 0.5, 1, 2 g/kg | Broilers, Huaixiang, 1–35 days | BWG, FI, NR | [127] |
Feed-grade betaine | 0.8 g/kg | Ducks, NR, 1–42 days | BW, FI, FCR, Bh, Im, SCFA | [122] |
Anhydrous betaine | 1, 2, 3 g/kg | Broilers, Ross 308, 1–35 days | M, BMY, BMfl, BMpH, a*, Dl, CL, SF, OS | [111] |
Feed-grade betaine | 1 g/kg | Broilers, Huaixiang, 5–15 weeks | IBF | [107] |
Active natural betaine | 1 g/kg | Broilers, Ross 308, 1–35 days | BWG, FI, FCR, IH | [101] |
Water-added betaine | 1 g/L | Broilers, Ross 308, 21–35 days | %D, CC, WHC, CL, Mt | [128] |
Feed-grade betaine | 2 g/kg | Broilers, Ross 308, 1–35 days | BWG, FI, Sbp, Mmp, Ir | [110] |
Feed-grade betaine | 8 g/kg | Laying hens, Hy-Line Brown, 21–27 weeks | Lr, EQ | [102] |
Feed-grade betaine | 1.5, 3 g/kg | Broilers, NR, 1–21 days | FCR, Sbp, Lbp | [129] |
Feed-grade betaine | 0.5, 1, 1.5 g/kg | Broilers, Caribro-vishal, 0–42 days | BWG, FI, FCR, CMIR, Gm; Bh, BMW | [130] |
Feed-grade betaine | 1, 3 g/kg | Laying hens, Hy-Line Brown, 71–77 weeks | Im, Lr; Mc | [121] |
5.3. Rabbits
5.4. Horses
5.5. Dogs and Cats
5.6. Fishes
Species | Betaine Recommended | Observed Effects | Source |
---|---|---|---|
Hybrid Grouper Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus ♀ | 0.5% | Improved feed efficiency, protein and methionine retention, growth performance (SGR), and reduced ammonia excretion. | [159,175] |
Rainbow Trout (Onchorincus mykiss) | 0.5–1% | In combination with 25% soybean meal, positively influenced growth, feed utilization, and fatty acid profiles. | [156,166,176] |
Nile Tilapia (Oreochromis niloticus) | 0.05% | Improved weight gain, body protein content, reduced FCR and body fat. | [158,163] |
Common Carp (Cyprinus carpio) | 0.3% | Growth performance (BWG, DWG, FCR, FCE, RGR%, SGR%) improved and enhanced digestive enzyme activity. | [177,178,179] |
Caspian Trout (Salmo trutta) | 1.4% | Higher weight gain, SGR, and PER compared to the baseline (plant-protein diet). Digestive enzyme activity (lipase, amylase) increased. | [161] |
Giant Freshwater Prawn (Macrobrachium rosenbergii) | 0.5% | Improved weight gain, FCR, daily growth, and feed intake vs. control. Digestive enzyme activity was higher. Survival rate under bacterial stress also increased. | [157] |
Black Tiger Prawn (Penaeus monodon) | 2% | Effects on intestinal histology, lipid metabolism, and immune response. | [180,181] |
Pikeperch (Sander luciperca) | 2% | Increased palatability and acceptability of food for fingerlings. | [182,183] |
Ayu (Plecoglossus altivelis) | 100–200 mg/kg (injection) | Protection against Vibrio anguillarum. | [160] |
Bullfrog Bass (Lithobates catesbeianus) | 0.4% | Increased whole-body protein deposition. | [167] |
6. Betaine in Ruminant Nutrition
6.1. Betaine and Rumen Microorganisms
6.2. Betaine Supplementation in Cattle
6.3. Betaine Supplementation in Small Ruminants
Source | Dosage | Breed and Category | Diet Type | Main Effects 1 | Reference |
---|---|---|---|---|---|
Feed-grade betaine | 2 g/kg BW | Manchego, growing lambs | Concentrate mixture and barley straw | FT, NL | [223] |
Rumen escape betaine | 2 g/kg BW | Manchego, growing lambs | Concentrate mixture and barley straw | ADG, FCR, FT, LMA, CW | [219] |
Feed-grade betaine | 4 g/kg BW | Murciano–Granadina, lactating goats | Basal pelleted diet and alfalfa hay | MY, MFA, | [220] |
Rumen-protected betaine | 3 g/d | Boer × Spanish, meat goats | Concentrate mixture and pasture | PTG, NEFA | [224] |
Glycine betaine | 0.2 g/kg BW | Barbari, non-pregnant goats | Not reported | Heat stress amelioration | [231] |
Feed-grade betaine | 2, 4 g/d | Merino, ewes | Oat chaff and alfalfa hay | WI, ADG, | [232] |
Rumen escape betaine | 2, 4 g/d | Merino, pregnant ewes | Basal pelleted diet and oaten hay | LWW, LADG, LBL, BUN, LSur | [233] |
Rumen-protected betaine | 1.1, 2.2, 3.3 g/d | Hu, growing lambs | Concentrate mixture | FI, ADG, MFA, | [225] |
Betaine hydrochloride | 5 g/d | Sanjab, pregnant ewes | Concentrate mixture and forages | BHB, MDA, | [227] |
Rumen-protected betaine | 2, 4, 6 g/d | Hu, growing lambs | Concentrate mixture | Ng, ADG, F/G, GSH-Px, MDA, SOD, CAT, | [228] |
Betaine hydrochloride | 1, 3 g/d | Hu, growing lambs | Hay-based TMR 2 | HDL-C, | [229] |
Feed-grade betaine | 2, 4 g/d | Merino, ewes | Oat chaff and alfalfa hay | I, NEFA, | [234] |
Feed-grade betaine | 4 g/kg DM | Damascus, lactating goats | Concentrate mixture and Egyptian clover hays | MY, FCM, Nd, NH3-N, TrVFA, | [221] |
Feed-grade betaine | 2, 4 g/d | Merino, ewes and neonatal lambs | Basal pelleted diet and oaten hay | LWW | [235] |
Feed-grade betaine | 4 g/d | Merino, ewes and neonatal lambs | Pasture and barley grains | RT, LBL; BCS, GL | [226] |
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SMB | Simulated moving bed |
ALD | Alcoholic fatty liver disease |
MAFLD | Metabolism-associated fatty liver disease |
ADH | Alcohol dehydrogenase |
MEOS | Microsomal ethanol-oxidizing system |
Met | Methionine |
SAM | S-adenosylmethionine |
SAH | S-adenosylhomocysteine |
FFAs | Free fatty acids |
VLDL | Very low-density lipoproteins |
NOS | Nitric oxide synthase |
BHMT | Homocysteine methyl transferase |
ADG | Average daily gain |
FCR | Feed conversion ratio |
MAT | Methionine adenosyltransferase |
PUFAs | Polyunsaturated fatty acid |
ALA | Alpha-linolenic acid |
EPA | Eicosapentaenoic acid |
DHA | Docosahexaenoic acid |
CKD | Chronic kidney disease |
FASS | Fatty acid synthase |
ACC | Acetyl-CoA carboxylase |
References
- Arumugam, M.K.; Paal, M.C.; Donohue, T.M.; Ganesan, M.; Osna, N.A.; Kharbanda, K.K. Beneficial Effects of Betaine: A Comprehensive Review. Biology 2021, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Dobrijević, D.; Pastor, K.; Nastić, N.; Özogul, F.; Krulj, J.; Kokić, B.; Bartkiene, E.; Rocha, J.M.; Kojić, J. Betaine as a Functional Ingredient: Metabolism, Health-Promoting Attributes, Food Sources, Applications and Analysis Methods. Molecules 2023, 28, 4824. [Google Scholar] [CrossRef]
- Craig, S.A. Betaine in human nutrition. Am. J. Clin. Nutr. 2004, 80, 539–549. [Google Scholar] [CrossRef]
- Willingham, B.D.; Ragland, T.J.; Ormsbee, M.J. Betaine Supplementation May Improve Heat Tolerance: Potential Mechanisms in Humans. Nutrients 2020, 12, 2939. [Google Scholar] [CrossRef] [PubMed]
- Muir, B.M.; Anderson, A.R. Development and Diversification of Sugar Beet in Europe. Sugar Tech 2022, 24, 992–1009. [Google Scholar] [CrossRef]
- Vaccari, G. Nuove tecnologie in zuccherificio. RICHMAC Mag. 2002, 84, 47–51. [Google Scholar]
- Vaccari, G.; Sgualdino, G.; Tamburini, E.; Pezzi, G.; Citterio, P.; Verardi, R.; Urbainec, K. New eco-friendly proposal for the crystallization of beet raw juice. J. Clean. Prod. 2005, 13, 1447–1460. [Google Scholar] [CrossRef]
- Paananen, H.; Kuisma, J. Chromatographic separation of molasses components. Zuckerindustrie 2000, 125, 978–981. [Google Scholar]
- Altinisik, S.; Zeidan, H.; Deniz Yilmaz, M.D.; Marti, M.E. Reactive Extraction of Betaine from Sugarbeet Processing Byproducts. ACS Omega 2023, 8, 11029–11038. [Google Scholar] [CrossRef]
- Ehrenhuber, B. Molasses desugarizing with betaine production. Zuckerindustrie 2005, 130, 463–469. [Google Scholar]
- Ueland, P.M. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 2011, 34, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Olthof, M.R.; Brink, E.J.; Katan, M.B.; Verhoef, P. Choline supplemented as phosphatidylcholine decreases fasting and postmethionine-loading plasma homocysteine concentrations in healthy men. Am. J. Clin. Nutr. 2005, 82, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Zulfiqar, F.; Ashraf, M.; Siddique, K.H.M. Role of Glycine Betaine in the Thermotolerance of Plants. Agronomy 2022, 12, 276. [Google Scholar] [CrossRef]
- Haghighi, P.; Habibi, D.; Mozafari, H.; Sani, B.; Sadeghishoae, M. Impact of Methanol and Glycine Betaine on Yield and Quality of Fodder Beet Genotypes (Beta vulgaris subsp. vulgaris). Agronomy 2021, 11, 2122. [Google Scholar] [CrossRef]
- Zou, H.; Chen, N.; Shi, M.; Xian, M.; Song, Y.; Liu, J. The metabolism and biotechnological application of betaine in microorganisms. Appl. Microbiol. Biotechnol. 2016, 100, 3865–3876. [Google Scholar] [CrossRef]
- Kelleppan, V.T.; King, J.P.; Butler, C.S.G.; Williams, A.P.; Tuck, K.L.; Tabor, R.F. Heads or tails? The synthesis, self-assembly, properties and uses of betaine and betaine-like surfactants. Adv. Colloid Interface Sci. 2021, 297, 102528. [Google Scholar] [CrossRef]
- Waggle, D.H.; Lambert, M.A.; Miller, G.D.; Farrel, E.P.; Deyoe, C.W. Extensive analyses of flours and millfeeds made from nine different wheat mixes. II. Amino acids, minerals, vitamins, and gross energy. Cereal Chem. 1967, 44, 48–60. [Google Scholar]
- Sakamoto, A.; Nishimura, Y.; Ono, H.; Sakura, N. Betaine and homocysteine concentrations in foods. Pediatr. Int. 2002, 44, 409–413. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Mar, M.-H.; Howe, J.C.; Holden, J.M. Concentrations of choline-containing compounds and betaine in common foods. J. Nutr. 2003, 133, 1302–1307. [Google Scholar] [CrossRef]
- U.S. Institute of Medicine. Dietary Reference Intakes for Folate, Thiamin, Riboflavin, Niacin, Vitamin B12, Panthothenic Acid, Biotin, and Choline; National Academy Press: Washington, DC, USA, 1998; Volume 1. [Google Scholar]
- Hoffman, J.R.; Ratamess, N.A.; Kang, J.; Rashti, S.L.; Faigenbaum, A.D. Effect of betaine supplementation on power performance and fatigue. J. Int. Soc. Sports Nutr. 2009, 6, 7–10. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Bagheri, R.; Tinsley, G.M.; Asbaghi, O.; Salehpour, S.; Kashkooli, S.; Kooti, W.; Wong, A. Betaine supplementation fails to improve body composition: A systematic review and meta-analysis. Br. J. Nutr. 2022, 128, 975–988. [Google Scholar] [CrossRef] [PubMed]
- Moro, T.; Badiali, F.; Fabbri, I.; Paoli, A. Betaine Supplementation Does not Improve Muscle Hypertrophy or Strength Following 6Weeks of Cross-Fit Training. Nutrients 2020, 12, 1688. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.; Zeisel, S.H.; Jacques, P.; Selhub, J.; Dougherty, L.; Colditz, G.A.; Willett, W.C. Dietary choline and betaine assessed by food-frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. Am. J. Clin. Nutr. 2006, 83, 905–911. [Google Scholar] [CrossRef]
- Hayes, K.C.; Pronczuk, A.; Cook, M.W.; Robbins, M.C. Betaine in sub-acute and sub-chronic rat studies. Food Chem. Toxicol. 2003, 41, 1685–1700. [Google Scholar] [CrossRef]
- Cholewa, J.M.; Guimarães-Ferreira, L.; Zanchi, N.E. Effects of betaine on performance and body composition: A review of recent findings and potential mechanisms. Amino Acids 2014, 46, 1785–1793. [Google Scholar] [CrossRef]
- Wettstein, M.; Weik, C.; Holneicher, C.; Häussinger, D. Betaine as an osmolyte in rat liver: Metabolism and cell-to-cell interactions. Hepatology 1998, 27, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Peters-Regehr, T.; Bode, J.G.; Kubitz, R.; Haussinger, D. Organic osmolyte transport in quiescent and activated rat hepatic stellate cells (Ito cells). Hepatology 1999, 29, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Choi, K.H.; Kim, Y.C. Effect of acute betaine administration on hepatic metabolism of S-amino acids in rats and mice. Biochem. Pharmacol. 2003, 65, 1565–1574. [Google Scholar] [CrossRef]
- Kettunen, H.; Tiihonen, K.; Peuranen, S.; Saarinen, M.T.; Remus, J.C. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 2001, 130, 759–769. [Google Scholar] [CrossRef]
- Kettunen, H.; Peuranen, S.; Tiihonen, K.; Saarinen, M. Intestinal uptake of betaine in vitro and the distribution of methyl groups from betaine, choline, and methionine in the body of broiler chicks. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 2001, 128, 269–278. [Google Scholar] [CrossRef]
- Anioła, M.; Dega-Szafran, Z.; Katrusiak, A.; Szafran, M. NH· · ·O and OH· · ·O interactions of glycine derivatives with squaric acid. New J. Chem. 2014, 38, 3556–3568. [Google Scholar] [CrossRef]
- Ripa, R.; Ripa, S. Homocysteine: A neglected cardiovascular risk factor. Prog. Nutr. 2003, 5, 248–261. [Google Scholar]
- Singh, S.; Osna, N.A.; Kharbanda, K.K. Treatment options for alcoholic and non-alcoholic fatty liver disease: A review. World J. Gastroenterol. 2017, 23, 6549–6570. [Google Scholar] [CrossRef] [PubMed]
- Matteoni, C.A.; Younossi, Z.M.; Gramlich, T.; Boparai, N.; Liu, Y.C.; McCullough, A.J. Nonalcoholic fatty liver disease: A spectrum of clinical and pathological severity. Gastroenterology 1999, 116, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Guangfu, Z.; Fang, H.; Chenlu, W.; Pan, L.; Nengzhang, L.; Jinping, D.; Guoqiang, Z.; Wenkai, R.; Yuanyi, P. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. Sec. Nutr. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef]
- Oshino, N.; Oshino, R.; Chance, B. The characteristics of the ‘peroxidatic’ reaction of catalase in ethanol oxidation. Biochem. J. 1973, 131, 555–563. [Google Scholar] [CrossRef]
- Cederbaum, A.I. Alcohol Metabolism. Clin. Liver Dis. 2012, 156, 667–685. [Google Scholar] [CrossRef]
- Zakhari, S. Overview: How Is Alcohol Metabolized by the Body? Alcohol Res. Health 2006, 29, 245–254. [Google Scholar] [PubMed] [PubMed Central]
- Barak, A.J.; Beckenhauer, H.C.; Kharbanda, K.K.; Tuma, D.J. Chronic ethanol consumption increases homocysteine accumulation in hepatocytes. Alcohol 2001, 25, 77–81. [Google Scholar] [CrossRef]
- Kharbanda, K.K. Role of transmethylation reactions in alcoholic liver disease. World J. Gastroenterol. 2007, 13, 4947–4954. [Google Scholar] [CrossRef]
- Kharbanda, K.K. Methionine metabolic pathway in alcoholic liver injury. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Barak, A.J.; Beckenhauer, H.C.; Mailliard, M.E.; Kharbanda, K.K.; Tuma, D.J. Betaine Lowers Elevated S-Adenosylhomocysteine Levels in Hepatocytes from Ethanol-Fed Rats. J. Nutr. 2003, 133, 2845–2848. [Google Scholar] [CrossRef]
- Kharbanda, K.K.; Mailliard, M.E.; Baldwin, C.R.; Beckenhauer, H.C.; Sorrell, M.F.; Tuma, D.J. Betaine attenuates alcoholic steatosis by restoring phosphatidylcholine generation via the phosphatidylethanolamine methyltransferase pathway. J. Hepatol. 2007, 46, 314–321. [Google Scholar] [CrossRef]
- Da Silva, R.P.; Eudy, B.J.; Deminice, R. One-Carbon Metabolism in Fatty Liver Disease and Fibrosis: One-Carbon to Rule Them All. J. Nutr. 2020, 150, 994–1003. [Google Scholar] [CrossRef]
- Lau, J.K.C.; Zhang, X.; Yu, J. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances. J. Pathol. 2017, 241, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Kathirvel, E.; Morgan, K.; Nandgiri, G.; Sandoval, B.C.; Caudill, M.A.; Bottiglieri, T.; French, S.W.; Morgan, T.R. Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: A potential mechanism for hepatoprotection by betaine. Am. J. Physiol. Liver Physiol. 2010, 299, G1068–G1077. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Li, M.; Zheng, D.; Chen, Q.; Liu, W.; Feng, L. Adipose tissue hypoxia and low-grade inflammation: A possible mechanism for ethanol-related glucose intolerance? Br. J. Nutr. 2015, 113, 1355–1364. [Google Scholar] [CrossRef]
- Kaelin, B.R.; McKenzie, C.M.; Hempel, K.W.; Lang, A.L.; Arteel, G.E.; Beier, J.I. Adipose tissue-liver crosstalk during pathologic changes caused by vinyl chloride metabolites in mice. Toxicol. Appl. Pharmacol. 2020, 399, 115068. [Google Scholar] [CrossRef]
- Borsook, H.; Borsook, M.E. The biochemical basis of betaine glycocyamine therapy. Ann. West. Med. Surg. 1951, 5, 825–829. [Google Scholar]
- Borsook, M.E.; Borsook, H. Treatment of cardiac decompensation with betaine and glycocyamine. Ann. West. Med. Surg. 1951, 5, 830–835. [Google Scholar]
- Olthof, M.; Verhoef, P.; van Vliet, T.; Boelsma, E. Low Dose Betaine Supplementation Leads to Immediate and Long Term Lowering of Plasma Homocysteine in Healthy Men and Women. J. Nutr. 2003, 133, 4135–4138. [Google Scholar] [CrossRef]
- Van Zandt, V.; Borsook, H. New biochemical approach to the treatment of congestive heart failure. Ann. West. Med. Surg. 1951, 5, 856–862. [Google Scholar] [PubMed]
- Graybiel, A.; Patterson, C.A. Use of betaine and glycocyamine in the treatment of patients with heart disease: Preliminary report. Ann. West. Med. Surg. 1951, 5, 863–865. [Google Scholar]
- Lever, M.; George, P.M.; Slow, S.; Bellamy, D.; Young, J.M.; Ho, M.; McEntyre, C.J.; Elmslie, J.L.; Atkinson, W.; Molyneux, S.L.; et al. Betaine and Trimethylamine-N-Oxide as Predictors of Cardiovascular Outcomes Show Different Patterns in Diabetes Mellitus: An Observational Study. PLoS ONE 2014, 9, e114969. [Google Scholar] [CrossRef] [PubMed]
- Morrison, L.M. Results of betaine treatment of atherosclerosis. Am. J. Dig. Dis. 1952, 19, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Morrison, L.M. Use of betaine-lipotropic combinations in clinical practice. Geriatrics 1953, 8, 649–655. [Google Scholar]
- Selhub, J. Homocysteine metabolism. Annu. Rev. Nutr. 1999, 19, 217–246. [Google Scholar] [CrossRef]
- Morrison, L.M. Arteriosclerosis—Recent advances in the dietary and medicinal treatment. J. Am. Med. Assoc. 1951, 145, 1232–1236. [Google Scholar] [CrossRef]
- Finkelstein, J.D. Homocysteine: A history in progress. Nutr. Rev. 2000, 58, 193–204. [Google Scholar] [CrossRef]
- Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P.F.; Rosenberg, I.H.; D’Agostino, R.B.; Wilson, P.W.F.; Wolf, P.A. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N. Engl. J. Med. 2002, 346, 476–483. [Google Scholar] [CrossRef]
- Boers, G.H. Hyperhomocysteinaemia: A newly recognized risk factor for vascular disease. Neth. J. Med. 1994, 45, 34–41. [Google Scholar] [PubMed]
- Steenge, G.R.; Verhoef, P.; Katan, M.B. Betaine supplementation lowers plasma homocysteine in healthy men and women. J. Nutr. 2003, 133, 1291–1295. [Google Scholar] [CrossRef]
- Matthews, A.; Johnson, T.N.; Rostami-Hodjegan, A.; Chakrapani, A.; Wraith, J.E.; Moat, S.J.; Bonham, J.R.; Tucker, G.T. An indirect response model of homocysteine suppression by betaine: Optimizing the dosage regimen of betaine in homocystinuria. Br. J. Clin. Pharmacol. 2002, 54, 140–146. [Google Scholar] [CrossRef]
- Brouwer, I.A.; Verhoef, P.; Urgert, R. Betaine supplementation and plasma homocysteine in healthy volunteers. Arch. Intern. Med. 2000, 160, 2546–2547. [Google Scholar] [CrossRef] [PubMed]
- Franken, D.G.; Boers, G.H.; Blom, H.J.; Trijbels, F.J.; Kloppenborg, P.W. Treatment of mild hyperhomocysteinemia in vascular disease patients. Arterioscler. Thromb. 1994, 14, 465–470. [Google Scholar] [CrossRef]
- van den Berg, M.; Boers, G.H. Homocystinuria: What about mild hyperhomocysteinaemia? Postgrad. Med. J. 1996, 72, 513–518. [Google Scholar] [CrossRef]
- Schwahn, B.C.; Wendel, U.; Lussier-Cacan, S.; Mar, M.-H.; Zeisel, S.H.; Leclerc, D.; Castro, C.; Garrow, T.A.; Rozen, R. Effects of betaine in a murine model of mild cystathionine-β-synthase deficiency. Metabolism 2004, 53, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Pan, H.; Fan, L.; Zhang, L.; Li, J.; Cheng, S.; Meng, L.; Shen, N.; Liu, Y.; Li, Y.; et al. Dietary Betaine Improves Glucose Metabolism in Obese Mice. J. Nutr. 2024, 154, 1309–1320. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Bagheri, R.; Ghanavati, M.; Asbaghi, O.; Tinsley, G.M.; Mombaini, D.; Kooti, W.; Kashkooli, S.; Wong, A. Effects of betaine supplementation on cardiovascular markers: A systematic review and Meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 62, 6516–6533. [Google Scholar] [CrossRef]
- Delgado-Reyes, C.V.; Wallig, M.A.; Garrow, T.A. Immunohistochemical detection of betaine-homocysteine S-methyltransferase in human, pig, and rat liver and kidney. Arch. Biochem. Biophys. 2001, 393, 184–186. [Google Scholar] [CrossRef]
- van Guldener, C.; Janssen, M.J.; de Meer, K.; Donker, A.J.; Stehouwer, C.D. Effect of folic acid and betaine on fasting and postmethionine-loading plasma homocysteine and methionine levels in chronic haemodialysis patients. J. Intern. Med. 1999, 245, 175–183. [Google Scholar] [CrossRef]
- Bostom, A.G.; Shemin, D.; Nadeau, M.R.; Shih, V.; Stabler, S.P.; Allen, R.H.; Selhub, J. Short term betaine therapy fails to lower elevated fasting total plasma homocysteine concentrations in hemodialysis patients maintained on chronic folic acid supplementation. Atherosclerosis 1995, 113, 129–132. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, H.; Guo, X.-F.; Li, K.; Li, S.; Li, D. Effect of Betaine on Reducing Body Fat—A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2019, 11, 2480. [Google Scholar] [CrossRef] [PubMed]
- Roti, M.W.; Hatch, H.L.; Sutherland, J.W.; Mahood, N.V.; Clements, J.M.; Seen, A.D.; Fiala, K.A.; Craig, S.A.S.; Casa, D.J.; Armstrong, L.E. Homocysteine, lipid and glucose responses to betaine supplementation during running in the heat. Med. Sci. Sports Exerc. 2003, 35, S271. [Google Scholar] [CrossRef]
- Liversedge, L.A. Glycocyamine and betaine in motor-neurone disease. Lancet 1956, 2, 1136–1138. [Google Scholar] [CrossRef]
- Armstrong, L.; Roti, M.; Hatch, H.; Sutherland, J.; Mahood, N.; Clements, J.; Seen, A.; Fiala, K.; Craig, S.; Casa, D.; et al. Rehydration with fluids containing betaine: Running performance and metabolism in a 31 C environment. Med. Sci. Sports Exerc. 2003, 35, S311. [Google Scholar] [CrossRef]
- Eklund, M.; Bauer, E.; Wamatu, J.; Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 2005, 18, 31–48. [Google Scholar] [CrossRef]
- Sales, J. A meta-analysis of the effects of dietary betaine supplementation on finishing performance and carcass characteristics of pigs. Anim. Feed Sci. Technol. 2011, 165, 68–78. [Google Scholar] [CrossRef]
- Kidd, M.T.; Ferket, P.R.; Garlich, J.D. Nutritional and osmoregulatory functions of betaine. World’s Poult. Sci. J. 1997, 53, 125–139. [Google Scholar] [CrossRef]
- Fernandez-Figares, I.; Wray-Cahen, D.; Steele, N.C.; Campbell, R.G.; Hall, D.D.; Virtanen, E.; Caperna, T.J. Effect of dietary betaine on nutrient utilization and partitioning in the young growing feed-restricted pig. J. Anim. Sci. 2002, 80, 421–428. [Google Scholar] [CrossRef]
- Ratriyanto, A.; Mosenthin, R.; Bauer, E.; Eklund, M. Metabolic, Osmoregulatory and Nutritional Functions of Betaine in Monogastric Animals. Asian-Aust. J. Anim. Sci. 2009, 22, 1461–1476. [Google Scholar] [CrossRef]
- Matthews, J.O.; Southern, L.L.; Bidner, T.D. Estimation of the total sulfur amino acid requirement and the effect of betaine in diets deficient in total sulfur amino acids for the weanling pig. J. Anim. Sci. 2001, 79, 1557–1565. [Google Scholar] [CrossRef]
- Matthews, J.O.; Southern, L.L.; Pontif, J.E.; Higbie, A.D.; Bidner, T.D. Interactive effects of betaine, crude protein, and net energy in finishing pigs. J. Anim. Sci. 1998, 76, 2444–2455. [Google Scholar] [CrossRef]
- Lawrence, B.V.; Schinckel, A.P.; Adeola, O.; Cera, K. Impact of betaine on pig finishing performance and carcass composition. J. Anim. Sci. 2002, 80, 475–482. [Google Scholar] [CrossRef]
- Schrama, J.W.; Heetkamp, M.J.; Simmins, P.H.; Gerrits, W.J. Dietary betaine supplementation affects energy metabolism of pigs. J. Anim. Sci. 2003, 81, 1202–1209. [Google Scholar] [CrossRef]
- Lipiński, K.; Szramko, E.; Jeroch, H.; Matusevičius, P. Effects of betaine on energy utilization in growing pigs–A review. Ann. Anim. Sci. 2012, 12, 291–300. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, H.; Chen, D.; Tian, G.; Zheng, P.; He, J.; Yu, J.; Mao, X.; Huang, Z.; Pu, J.; et al. Long-Term Dietary Supplementation with Betaine Improves Growth Performance, Meat Quality and Intramuscular Fat Deposition in Growing-Finishing Pigs. Foods 2023, 12, 494. [Google Scholar] [CrossRef] [PubMed]
- Petronini, P.G.; de Angelis, E.M.; Borghetti, P.; Borghetti, A.F. Modulation by betaine of cellular response to osmotic stress. J. Biochem. 1992, 282, 69–73. [Google Scholar] [CrossRef]
- Alfieri, R.R.; Cavazzoni, A.; Petronini, P.G.; Bonelli, M.A.; Caccamo, A.E.; Borghetti, A.F.; Wheeler, K.P. Compatible osmolytes modulate the responses of porcine endothelial cells to hypertonicity and protect them from apoptosis. J. Physiol. 2002, 540, 499–508. [Google Scholar] [CrossRef]
- Augustine, P.C.; McNaughton, J.L.; Virtanen, E.; Rosi, L. Effects of betaine on the growth performance of chicks inoculated with mixed cultures of avian Eimeria species and on invasion and development of Eimeria tenella and Eimeria acervulina in vitro and in vivo. Poult. Sci. 1997, 76, 802–809. [Google Scholar] [CrossRef]
- Klasing, K.C.; Adler, K.L.; Remus, J.C.; Calvert, C.C. Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidian-infected chicks and increases functional properties of phagocytes. J. Nutr. 2002, 132, 2274–2282. [Google Scholar] [CrossRef] [PubMed]
- Teeter, R.G.; Remus, J.C.; Belay, T.; Mooney, M.; Virtanen, E.; Augustine, P. The Effects of Betaine on Water Balance and Performance in Broilers Reared under Differing Environmental Conditions. In Proceedings of the Australian Poultry Science Symposium, Balnave, Sydney, Australia, 9–10 February 1999; University of Sydney Printing Service: Sydney, Australia, 1999; Volume 165. [Google Scholar]
- Yu, D.Y.; Feng, J.; Xu, Z.R. Effects of betaine on fat and protein metabolism in different stages of swine. Chin. J. Vet. Sci. 2001, 21, 200–203. [Google Scholar]
- Australian Government–Department of Agriculture. Optimising the Duration of Betaine Supplementation in Pig Production. Final Report 2021. APL Project 2018-0023. Available online: https://australianpork.com.au/sites/default/files/2021-06/2018-0023.pdf (accessed on 12 April 2025).
- Cai, D.; Jia, Y.; Lu, J.; Yuan, M.; Sui, S.; Song, H.; Zhao, R. Maternal dietary betaine supplementation modifies hepatic expression of cholesterol metabolic genes via epigenetic mechanisms in newborn piglets. Br. J. Nutr. 2014, 112, 1459–1468. [Google Scholar] [CrossRef]
- Cabezón, F.A.; Schinckel, A.P.; Richert, B.T.; Stewart, K.R.; Gandarillas, M.; Pasache, M.; Peralta, W.A. Effect of betaine supplementation during summer on sow lactation and subsequent farrowing performance. Prof. Anim. Sci. 2016, 32, 695–703. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Xu, Z.R.; Feng, J. The Effect of Betaine and Dl-Methionine on Growth Performance and Carcass Characteristics in Meat Ducks. Anim. Feed Sci. Technol. 2004, 116, 151–159. [Google Scholar] [CrossRef]
- Dorra, T.I.; Ibrahim, S.E.; Zayed, S.M. Effect of Dietary Betaine Supplementation on Growth Performance and Carcass Traits of Growing Turkey. J. Anim. Poult. Prod. 2012, 3, 365–377. [Google Scholar] [CrossRef]
- Ratriyanto, A.; Prastowo, S. Floor Space and Betaine Supplementation Alter the Nutrient Digestibility and Performance of Japanese Quail in a Tropical Environment. J. Therm. Biol. 2019, 83, 80–86. [Google Scholar] [CrossRef]
- Awad, W.A.; Ruhnau, D.; Gavrău, A.; Dublecz, K.; Hess, M. Comparing Effects of Natural Betaine and Betaine Hydrochloride on Gut Physiology in Broiler Chickens. Poult. Sci. 2022, 101, 102173. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Sun, X.; Li, Y.; Yang, X.; Liu, Y. Dietary Betaine Supplementation Improved Egg Quality and Gut Microbes of Laying Hens under Dexamethasone-Induced Oxidative Stress. Poult. Sci. 2024, 103, 104178. [Google Scholar] [CrossRef]
- Honarbakhsh, S.; Mahmood, S. Interactive Effects of Dietary Betaine and Saline Water on Carcass Traits of Broiler Chicks. J. Biol. Sci. 2007, 7, 1208–1214. [Google Scholar] [CrossRef]
- Attia, Y.A.; Abd El-Hamid, A.E.-H.E.; Abedalla, A.A.; Berika, M.A.; Al-Harthi, M.A.; Kucuk, O.; Sahin, K.; Abou-Shehema, B.M. Laying Performance, Digestibility and Plasma Hormones in Laying Hens Exposed to Chronic Heat Stress as Affected by Betaine, Vitamin C, and/or Vitamin E Supplementation. SpringerPlus 2016, 5, 1619. [Google Scholar] [CrossRef] [PubMed]
- Park, S.O.; Kim, W.K. Effects of Betaine on Biological Functions in Meat-Type Ducks Exposed to Heat Stress. Poult. Sci. 2017, 96, 1515. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Ringuet, M.; Furness, J.B.; Dunshea, F.R. Betaine and Antioxidants Improve Growth Performance, Breast Muscle Development and Ameliorate Thermoregulatory Responses to Cyclic Heat Exposure in Broiler Chickens. Animals 2018, 8, 162. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-C.; Guo, Y.; An, L.-L.; Zhao, Z.-H. Protective Effects of Dietary Betaine on Intestinal Barrier Function and Cecal Microbial Community in Indigenous Broiler Chickens Exposed to High Temperature Environment. Environ. Sci. Pollut. Res. 2021, 28, 10860–10871. [Google Scholar] [CrossRef]
- Waldroup, P.W.; Motl, M.A.; Yan, F.; Fritts, C.A. Effects of Betaine and Choline on Response to Methionine Supplementation to Broiler Diets Formulated to Industry Standards. J. Appl. Poult. Res. 2006, 15, 58–71. [Google Scholar] [CrossRef]
- Egbuniwe, I.C.; Ayo, J.O.; Ocheja, O.B. Betaine and Ascorbic Acid Modulate Indoor Behavior and Some Performance Indicators of Broiler Chickens in Response to Hot-Dry Season. J. Therm. Biol. 2018, 76, 38–44. [Google Scholar] [CrossRef]
- Saleh, A.A.; El-Tahan, H.M.; Shaban, M.; Morsy, W.A.; Genedy, S.; Alzawqari, M.H.; El-Tahan, H.M.; Shukry, M.; Ebeid, T.A.; El-Keredy, A.; et al. Effect of Dietary Supplementation of Betaine and Organic Minerals on Growth Performance, Serum Biochemical Parameters, Nutrients Digestibility, and Growth-Related Genes in Broilers under Heat Stress. Poult. Sci. 2023, 102, 103051. [Google Scholar] [CrossRef]
- Nutautaitė, M.; Alijošius, S.; Bliznikas, S.; Šašytė, V.; Vilienė, V.; Pockevičius, A.; Racevičiūtė-Stupelienė, A. Effect of Betaine, a Methyl Group Donor, on Broiler Chicken Growth Performance, Breast Muscle Quality Characteristics, Oxidative Status and Amino Acid Content. Ital. J. Anim. Sci. 2020, 19, 621–629. [Google Scholar] [CrossRef]
- Hamidi, H.; Pourreza, J.; Rahimi, H. Dietary Betaine Affect Duodenal Histology of Broilers Challenged with a Mixed Coccidial Infection. Pak. J. Biol. Sci. 2009, 12, 291–295. [Google Scholar] [CrossRef]
- Abd El-Ghany, W.A.; Babazadeh, D. Betaine: A Potential Nutritional Metabolite in the Poultry Industry. Animals 2022, 12, 2624. [Google Scholar] [CrossRef]
- Hassan, R.A.; Attia, Y.A.; El-Ganzory, E.H. Growth, Carcass Quality and Serum Constituents of Slow Growing Chicks as Affected by Betaine Addition to Diets Containing 1. Different Levels of Choline. Int. J. Poult. Sci. 2005, 4, 840–850. [Google Scholar] [CrossRef]
- Sayed, M.A.M.; Downing, J. The Effects of Water Replacement by Oral Rehydration Fluids with or without Betaine Supplementation on Performance, Acid-Base Balance, and Water Retention of Heat-Stressed Broiler Chickens. Poult. Sci. 2011, 90, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Garcia Neto, M.; Pesti, G.M.; Bakalli, R.I. Influence of Dietary Protein Level on the Broiler Chicken’s Response to Methionine and Betaine Supplements. Poult. Sci. 2000, 79, 1478–1484. [Google Scholar] [CrossRef]
- Park, B.S.; Park, S.O. Effects of Feeding Time with Betaine Diet on Growth Performance, Blood Markers, and Short Chain Fatty Acids in Meat Ducks Exposed to Heat Stress. Livest. Sci. 2017, 199, 31–36. [Google Scholar] [CrossRef]
- Esteve-Garcia, E.; Mack, S. The Effect of Dl-Methionine and Betaine on Growth Performance and Carcass Characteristics in Broilers. Anim. Feed Sci. Technol. 2000, 87, 85–93. [Google Scholar] [CrossRef]
- Pillai, P.B.; Fanatico, A.C.; Beers, K.W.; Blair, M.E.; Emmert, J.L. Homocysteine Remethylation in Young Broilers Fed Varying Levels of Methionine, Choline, and Betaine. Poult. Sci. 2006, 85, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Al-Tamimi, H.; Mahmoud, K.; Al-Dawood, A.; Nusairat, B.; Bani Khalaf, H. Thermotolerance of Broiler Chicks Ingesting Dietary Betaine and/or Creatine. Animals 2019, 9, 742. [Google Scholar] [CrossRef]
- Du, X.; Pian, H.; Zhao, D.; Zhang, Y.; Wu, X.; He, J.; Chen, L.; Liu, F.; Yu, D. Enhancing Gut-Ovary Health in Aged Laying Hens: The Impact of Dietary Betaine Supplementation. Poult. Sci. 2025, 104, 104894. [Google Scholar] [CrossRef]
- Park, S.O.; Zammit, V.A. Effect of Feed Restriction with Betaine and Ascorbic Acid Supplementation on Caecal Bacteria, Short Chain Fatty Acid, Blood Biomarker, Duodenal Morphology and Growth Performance of Meat Ducks under Heat Stress. Eur. Poult. Sci. 2019, 83, 1–13. [Google Scholar] [CrossRef]
- Ratriyanto, A.; Indreswari, R.; Nuhriawangsa, A.M.P. Effects of Dietary Protein Level and Betaine Supplementation on Nutrient Digestibility and Performance of Japanese Quails. Braz. J. Poult. Sci. 2017, 19, 445–454. [Google Scholar] [CrossRef]
- Zulkifli, I.; Mysahra, S.A.; Jin, L.Z. Dietary Supplementation of Betaine (Betafin®) and Response to High Temperature Stress in Male Broiler Chickens. Asian-Australas. J. Anim. Sci. 2004, 17, 244–249. [Google Scholar] [CrossRef]
- Rao, S.V.R.; Raju, M.V.L.N.; Panda, A.K.; Saharia, P.; Sunder, G.S. Effect of Supplementing Betaine on Performance, Carcass Traits and Immune Responses in Broiler Chicken Fed Diets Containing Different Concentrations of Methionine. Asian-Australas. J. Anim. Sci. 2011, 24, 662–669. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Liu, W.-C.; Xiao, M.; Zhao, Z.-H.; An, L.-L. Effects of Graded Levels of Betaine Supplementation on Growth Performance and Intestinal Morphology in Indigenous Young Yellow Feather Broilers. Pak. J. Zool. 2019, 51, 2323. [Google Scholar] [CrossRef]
- Liu, W.; Yuan, Y.; Sun, C.; Balasubramanian, B.; Zhao, Z.; An, L. Effects of Dietary Betaine on Growth Performance, Digestive Function, Carcass Traits, and Meat Quality in Indigenous Yellow-Feathered Broilers under Long-Term Heat Stress. Animals 2019, 9, 506. [Google Scholar] [CrossRef] [PubMed]
- Suliman, G.M.; Hussein, E.O.S.; Al-Owaimer, A.N.; Alhotan, R.A.; Al-Garadi, M.A.; Mahdi, J.M.H.; Ba-Awadh, H.A.; Qaid, M.M.; Swelum, A.A.-A. Betaine and Nano-Emulsified Vegetable Oil Supplementation for Improving Carcass and Meat Quality Characteristics of Broiler Chickens under Heat Stress Conditions. Front. Vet. Sci. 2023, 10, 1147020. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, L.; He, X.; Bian, G. Effect of Betaine on Growth Performance, Methionine Metabolism, and Methyl Transfer in Broilers Aged 1 to 21 Days and Fed a Low-Methionine Diet. J. Poult. Sci. 2025, 62, 2025010. [Google Scholar] [CrossRef]
- Monika, M.; Rokade, J.J.; Gopi, M.; Vispute, M.; Sonale, N.; Prasad, W.; Bhanja, S.K. Mitigation of Heat Stress in Broiler Chickens during Hot Summer Seasons Through Betaine Hydrochloride Osmoprotectant Intervention. Indian J. Anim. Res. 2025, 59, 490–496. [Google Scholar] [CrossRef]
- Marai, I.F.M.; Habeeb, A.A.M.; Gad, A.E. Rabbits’ productive, reproductive and physiological performance traits as affected by heat stress: A review. Livest. Prod. Sci. 2002, 78, 71–90. [Google Scholar] [CrossRef]
- Hassan, R.A.; Ebeid, T.A.; Abd El-Lateif, A.I.; Ismail, N.B. Effect of dietary betaine supplementation on growth, carcass and immunity of New Zealand White rabbits under high ambient temperature. Livest. Sci. 2011, 135, 103–109. [Google Scholar] [CrossRef]
- Morsy, W.A.; Hassan, R.A.; Abd El-Lateif, A.I. Effect of Dietary Ascorbic Acid and Betaine Supplementation on Productivity of Rabbit Does Under High Ambient Temperature. In Proceedings of the 10th World Rabbit Congress, Sharm El-Sheikh, Egypt, 3–6 September 2012; pp. 279–283. [Google Scholar]
- Lian, P.; Braber, S.; Garssen, J.; Wichers, H.J.; Folkerts, G.; Fink-Gremmels, J.; Varasteh, S. Beyond heat stress: Intestinal integrity disruption and mechanism-based intervention strategies. Nutrients 2020, 12, 734. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Pu, J.; Cai, J.; Zhao, H.; Jia, G.; Liu, G.; Tian, G. Dietary Betaine improves the intestinal health and growth performance of heat-stressed growing rabbits in summer. J. Anim. Sci. 2023, 101, skad363. [Google Scholar] [CrossRef]
- Li, Z.; Pu, J.; Zeng, T.; Cai, J.; Jia, G.; Zhao, H.; Liu, G.; Zeng, Q.; Luo, Y.; Tian, G. Effects of betaine on growth performance and intestinal health of rabbits fed different digestible energy diets. J. Anim. Sci. 2024, 102, skae029. [Google Scholar] [CrossRef]
- Li, Z.; Pu, J.; Chen, X.; Chen, Y.; Peng, X.; Cai, J.; Jia, G.; Zhao, H.; Tian, G. Betaine addition to the diet alleviates intestinal injury in growing rabbits during the summer heat through the AAT/mTOR pathway. J. Anim. Sci. Biotechnol. 2024, 15, 41. [Google Scholar] [CrossRef]
- Abu Hafsa, S.H.; Centoducati, G.; Hassan, A.A.; Maggiolino, A.; Elghandour, M.M.M.Y.; Salem, A.Z.M. Effects of Dietary Supplementations of Vitamin C, Organic Selenium, Betaine, and Pomegranate Peel on Alleviating the Effect of Heat Stress on Growing Rabbits. Animals 2024, 14, 950. [Google Scholar] [CrossRef] [PubMed]
- Koskinen, E.; Junnila, M.; Katila, T.; Soini, H. A Preliminary Study on the Use of Betaine as a Cryoprotective Agent in Deep Freezing of Stallion Semen. J. Vet. Med. Ser. A 1989, 36, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Trimeche, A.; Yvon, J.M.; Vidament, M.; Palmer, E.; Magistrini, M. Effects of glutamine, proline, histidine and betaine on post-thaw motility of stallion spermatozoa. Theriogenology 1999, 52, 181–191. [Google Scholar] [CrossRef]
- Warren, L.K.; Lawrence, L.M.; Thompson, K.N. The influence of betaine on untrained and trained horses exercising to fatigue. J. Anim. Sci. 1999, 77, 677–684. [Google Scholar] [CrossRef]
- Rose, R.J.; Schlierf, H.A.; Knight, P.K.; Plummer, C.; Davis, M.; Ray, S.P. Effects of N,N-dimethylglycine on cardiorespiratory function and lactate production in thoroughbred horses performing incremental treadmill exercise. Vet. Rec. 1989, 2, 268–271. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Liu, L.; Ma, Y.; Lu, H.; Yang, H.; Ouyang, W.; Yang, K. Effects of supplementary feeding of guanidine acetic acid and different methyl donors on athletic performance, glucose metabolism and antioxidative capacity in Yili horses. Chin. J. Anim. Nutr. 2021, 33, 6387–6397. [Google Scholar] [CrossRef]
- de Oliveira, K.; Fachiolli, D.F.; Watanabe, M.J.; Tsuzukibashi, D.; Bittar, C.M.M.; Costa, C.; Poiatti, M.L.; de Meirelles, P.R.L. Dimethylglycine supplementation in horses performing incremental treadmill exercise. Comp. Exerc. Physiol. 2015, 11, 167–172. [Google Scholar] [CrossRef]
- Lever, M.; Slow, S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem. 2010, 43, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Verbrugghe, A.; Bakovic, M. Peculiarities of one-carbon metabolism in the strict carnivorous cat and the role in feline hepatic lipidosis. Nutrients 2013, 5, 2811–2828. [Google Scholar] [CrossRef]
- Jewell, D.E.; Jackson, M.I. Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat. Animals 2020, 10, 2310. [Google Scholar] [CrossRef] [PubMed]
- Jewell, D.E.; Jackson, M.I. Dietary betaine and fatty acids change circulating single-carbon metabolites and fatty acids in the dog. Animals 2022, 12, 768. [Google Scholar] [CrossRef]
- Jewell, D.E.; Jackson, M.I. Dietary betaine interacts with very long chain n-3 polyunsaturated fatty acids to influence fat metabolism and circulating single carbon status in the cat. Animals 2022, 12, 2837. [Google Scholar] [CrossRef]
- Horio, M.; Ito, A.; Matsuoka, Y.; Moriyama, T.; Orita, Y.; Takenaka, M.; Imai, E. Apoptosis induced by hypertonicity in Madin Darley canine kidney cells: Protective effect of betaine. Nephrol. Dial. Transplant. 2001, 16, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Ephraim, E.; Jewell, D.E. Effect of Added Dietary Betaine and Soluble Fiber on Metabolites and Fecal Microbiome in Dogs with Early Renal Disease. Metabolites 2020, 10, 370. [Google Scholar] [CrossRef]
- Hall, J.A.; Jewell, D.E.; Ephraim, E. Changes in the faecal metabolome are associated with feeding fiber not health status in cats with chronic kidney disease. Metabolites 2020, 10, 281. [Google Scholar] [CrossRef]
- Mugwanya, M.; Dawood, M.A.; Kimera, F.; Sewilam, H. A meta-analysis on the influence of dietary betaine on the growth performance and feed utilization in aquatic animals. Aquac. Rep. 2024, 37, 102200. [Google Scholar] [CrossRef]
- Adjoumani, J.J.Y.; Wang, K.; Zhou, M.; Liu, W.; Zhang, D. Effect of dietary betaine on growth performance, antioxidant capacity and lipid metabolism in blunt snout bream fed a high-fat diet. Fish Physiol. Biochem. 2017, 43, 1733–1745. [Google Scholar] [CrossRef]
- Barry, K.J.; McClure, R.L.; Trushenski, J.T. Sea Clam-Derived Feeding Stimulants Enhance Acceptability and Intake of Reduced Fish Meal, Soy-Based Sunshine Bass Feeds. North Am. J. Aquac. 2017, 79, 115–122. [Google Scholar] [CrossRef]
- Pinedo-Gil, J.; Martín-Diana, A.B.; Bertotto, D.; Sanz-Calvo, M.A.; Jover-Cerdá, M.; Tomás-Vidal, A. Effects of dietary inclusions of red beet and betaine on the acute stress response and muscle lipid peroxidation in rainbow trout. Fish. Physiol. Biochem. 2018, 44, 939–948. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Ji, P.; Gao, X.; Sun, L.; Miao, S.; Lei, Y.; Du, X.; Zhang, X. Dietary betaine supplementation promotes growth, n-3 LC-PUFA content and innate immunity in Macrobrachium rosenbergii. Aquaculture 2020, 525, 735308. [Google Scholar] [CrossRef]
- Ismail, T.; Hegazi, E.; Dawood, M.A.; Nassef, E.; Bakr, A.; Paray, B.A.; Van Doan, H. Using of betaine to replace fish meal with soybean or/and corn gluten meal in Nile tilapia (Oreochromis niloticus) diets: Histomorphology, growth, fatty acid, and glucose-related gene expression traits. Aquac. Rep. 2020, 17, 100376. [Google Scholar] [CrossRef]
- La Muhamad, I.; Setiawati, M.; Wiyoto, W.; Ekasari, J. Dietary supplementation of betain to improve the growth and feed utilization in hybrid grouper (Epinephelus lanceolatus♂× Epinephelus fuscoguttatus♀) juvenile. J. Akuakultur. Indones. 2021, 20, 24–33. [Google Scholar] [CrossRef]
- Lu, J.F.; Luo, S.; Jin, T.C.; Wang, L.C.; Yang, G.J.; Lu, X.J.; Chen, J. Betaine protects ayu (Plecoglossus altivelis) against Vibrio anguillarum infection in salinity by regulating the immunomodulatory activity of monocytes/macrophages. Aquaculture 2021, 536, 736482. [Google Scholar] [CrossRef]
- Mohseni, M.; Saltanat, N.L.; Rastravan, M.E.; Golalipour, Y. Effects of betaine supplementation in plant-protein-based diets on growth performance, haemato-immunological parameters, antioxidant status and digestive enzyme activities of juvenile Caspian trout (Salmo trutta, Kessler, 1877). Aquac. Nutr. 2021, 27, 2132–2141. [Google Scholar] [CrossRef]
- Yeşilayer, N.; Kaymak, I.E. Effect of partial replacement of dietary fish meal by soybean meal with betaine attractant supplementation on growth performance and fatty acid profiles of juvenile rainbow trout (Oncorhynchus mykiss). Aquac. Res. 2020, 51, 1533–1541. [Google Scholar] [CrossRef]
- Ismail, T.; Nassef, E.; Hegazi, E.; Bakr, A.; Moustafa, E.M.; Abdo, W.; Elbialy, Z.I. The modulatory effect of dietary betaine on intestinal absorptive capacity, lipogenesis and expression of lipid metabolism- and growth-related genes in Nile tilapia fed on soybean meal-based diet. Slov. Vet. Res. 2019, 56, 25–38. [Google Scholar] [CrossRef]
- Ali, H.H.A.; Al-Faragi, J.K.A. Efficiency of betaine and β-glucan as feed additives on the growth performance and survival rate of common carp (Cyprinus carpio L.) fingerlings. J. Entomol. Zool. Stud. 2017, 5, 27–31. [Google Scholar]
- Tiril, S.U.; Alagil, F.; Yagci, F.B. Effects of betaine supplementation in plant protein-based diets on feed intake and growth performance in rainbow trout (Oncorhynchus mykiss). Isr. J. Aquac. 2008, 60, 57–64. [Google Scholar] [CrossRef]
- Tusche, K.; Berends, K.; Wuertz, S.; Susenbeth, A.; Schulz, C. Evaluation of feed attractants in potato protein concentrate based diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 2011, 321, 54–60. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, C.; Lu, K.; Song, K.; Wang, L. Effect of guanidinoacetic acid and betaine supplementation in soybean meal-based diets on growth performance, muscle energy metabolism and methionine utilization in the bullfrog Lithobates catesbeianus. Aquaculture 2021, 533, 736167. [Google Scholar] [CrossRef]
- Kolkovski, S.; Arieli, A.; Tandler, A. Visual and chemical cues stimulate microdiet ingestion in sea bream larvae. Aquac. Int. 1997, 5, 527–536. [Google Scholar] [CrossRef]
- Koven, W.; Kolkovski, S.; Hadas, E.; Gamsiz, K.; Tandler, A. Advances in the development of microdiets for gilthead seabream, Sparus aurata: A review. Aquaculture 2001, 194, 107–121. [Google Scholar] [CrossRef]
- Ghosh, T.K.; Chauhan, Y.H.; Mandal, R.N. Growth performance of Labeo bata (Hamilton, 1822) in freshwater and its acclimatization in brackish water with betaine as feed additive. Aquaculture 2019, 501, 128–134. [Google Scholar] [CrossRef]
- Altuntaş, E.; Ileri, C.; Yapar, F.; Karadaş, A.; Kibar, U. Betaine osmoregulation functioning against salt stress in methicillin-resistant Staphylococcus aureus (MRSA) Metisiline dirençli Staphylococcus aureus (MRSA)’da tuz stresine karşı betain ozmoregülasyon fonksiyonu. Turk Hij. Ve Deney. Biyol. Dergisi 2024, 81, 121–134. [Google Scholar] [CrossRef]
- Dong, X.; Xue, W.; Hua, J.; Hang, Y.; Sun, L.; Miao, S.; Wei, W.; Wu, X.; Du, X. Effects of dietary betaine in allogynogenetic gibel carp (Carassius auratus gibelio): Enhanced growth, reduced lipid deposition and depressed lipogenic gene expression. Aquac. Res. 2018, 49, 1967–1972. [Google Scholar] [CrossRef]
- Jin, M.; Shen, Y.; Pan, T.; Zhu, T.; Li, X.; Xu, F.; Betancor, M.B.; Jiao, L.; Tocher, D.R.; Zhou, Q. Dietary betaine mitigates hepatic steatosis and inflammation induced by a high-fat-diet by modulating the Sirt1/Srebp-1/Pparα pathway in juvenile black seabream (Acanthopagrus schlegelii). Front. Immunol. 2021, 12, 694720. [Google Scholar] [CrossRef]
- Risha, E.; Ahmed, F.; Khaled, A.A.; Hossain, F.M.A.; Akhtar, N.; Zahran, E. Interactive effects of dietary betaine and chromium picolinate on the immunomodulation, antioxidative response and disease resistance of Nile tilapia (Oreochromis niloticus). Aquac. Res. 2022, 53, 3464–3477. [Google Scholar] [CrossRef]
- Shapawi, R.; Abdullah, F.C.; Senoo, S.; Mustafa, S. Nutrition, growth and resilience of tiger grouper (Epinephelus fuscoguttatus) × giant Grouper (Epinephelus lanceolatus) hybrid–A review. Rev. Aquac. 2019, 11, 1285–1296. [Google Scholar] [CrossRef]
- Niroomand, M.; Sajadi, M.M.; Yahyavi, M.; Asadi, M. Effects of dietary Betaine on growth, survival, body composition and resistance of fry rainbow trout (Oncorhynchus mykiss) under environmental stress. Iran. Sci. Fish. J. 2011, 20, 135–146. [Google Scholar] [CrossRef]
- Ali, M.E.; Abubakar, K.A.; Sogbesan, O.A. Growth performance and nutrient utilization of Clarias gariepinus (Burchell, 1822) fingerlings fed dietary betaine additive diets. In Proceedings of the 37th Annual Conference of the Fisheries Society of Nigeria (FISON), Yola, Nigeria, 30 October–4 November 2022; pp. 133–137. [Google Scholar]
- Safari, R.; Hoseinifar, S.H.; Imanpour, M.R.; Hajibegloo, A.; Sanchouli, H.; Homayouni, M.; Siddik, M.A. The effects of multi-enzyme and betaine on growth performance, body composition haemato-immunological parameters and expression of growth-related genes in beluga (Huso huso). Aquaculture 2022, 549, 737784. [Google Scholar] [CrossRef]
- Hajirezaee, S.; Ramezani, S.; Ahani, S. Betaine and the probiotic, Lactobacillus rhamnosus in the diet of the Common carp, Cyprinus carpio: Effects on growth, digestive enzyme activities, antioxidant system, humoral and mucosal immunity and resistance to Streptococcus iniae. Aquac. Rep. 2024, 38, 102282. [Google Scholar] [CrossRef]
- Coman, G.J.; Sarac, H.Z.; Fielder, D.; Thorne, M. Evaluation of crystalline amino acids, betaine and AMP as food attractants of the giant tiger prawn (Penaeus monodon). Comp. Biochem. Physiol. Part A Physiol. 1996, 113, 247–253. [Google Scholar] [CrossRef]
- He, G.L.; Shi, M.L.; Liu, Y.C.; Chen, L.T.; Chen, X.; Zhu, W.B.; Chen, Z.B.; Tan, B.P.; Xie, S.W. Effects of dietary betaine supplementation on growth performance, feed intake, intestinal histology, lipid metabolism, and immune response of black tiger shrimp (Penaeus monodon) fed diets containing two levels of raw feed attractants. Aquac. Int. 2024, 32, 653–673. [Google Scholar] [CrossRef]
- Zakipour, R.E.; Akbari, M.; Arshadi, A.; Effatpanah, E. Effect of different levels of dietary Betaine on growth performance, food efficiency and survival rate of pike perch (Sander lucioperca) fingerlings. Iran. J. Fish. Sci. 2012, 11, 902–910. [Google Scholar]
- Azimirad, M.; Farhangi, M.; Amiri, B.; Effatpanah Komaee, I.; Mansouri Taee, H. Effects of different levels of betaine supplementation in diet on growth, feed efficiency indices and survival rate of pikeperch (Sander luciopreca) larvae. J. Fish. 2013, 66, 347–358. [Google Scholar] [CrossRef]
- Löest, C.A.; Titgemeyer, E.C.; Drouillard, J.S.; Coetzer, C.M.; Hunter, R.D.; Bindel, D.J.; Lambert, B.D. Supplemental Betaine and Peroxide-Treated Feather Meal for Finishing Cattle. J. Anim. Sci. 2002, 80, 2234–2240. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Oluboyede, K.; DiGiacomo, K.; Leury, B.J.; Cottrell, J.J. Betaine Improves Milk Yield in Grazing Dairy Cows Supplemented with Concentrates at High Temperatures. Animals 2019, 9, 57. [Google Scholar] [CrossRef]
- Abhijith, A.; Dunshea, F.R.; Chauhan, S.S.; Sejian, V.; DiGiacomo, K. A Meta-Analysis of the Effects of Dietary Betaine on Milk Production, Growth Performance, and Carcass Traits of Ruminants. Animals 2024, 14, 1756. [Google Scholar] [CrossRef]
- Pinotti, L.; Baldi, A.; Dell’Orto, V. Comparative mammalian choline metabolism with emphasis on the high-yielding dairy cow. Nutr. Res. Rev. 2002, 15, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Firincioglu, S.Y.F.Y.; Irshad, N. Role of Choline in Ruminant Nutrition: A Detailed Review. J. Hell. Vet. Med. Soc. 2022, 73, 3921–3928. [Google Scholar] [CrossRef]
- Hall, L.W.; Dunshea, F.R.; Allen, J.D.; Rungruang, S.; Collier, J.L.; Long, N.M.; Collier, R.J. Evaluation of Dietary Betaine in Lactating Holstein Cows Subjected to Heat Stress. J. Dairy Sci. 2016, 99, 9745–9753. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.F.; Wang, C.; Zhang, G.W.; Du, H.S.; Wu, Z.Z.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Chen, L.; et al. Effects of Betaine and Rumen-Protected Folic Acid Supplementation on Lactation Performance, Nutrient Digestion, Rumen Fermentation and Blood Metabolites in Dairy Cows. Anim. Feed Sci. Technol. 2020, 262, 114445. [Google Scholar] [CrossRef]
- Mahmood, M.; Khiaosa-Ard, R.; Zebeli, Q.; Petri, R.M. Betaine Modulates Rumen Archaeal Community and Functioning during Heat and Osmotic Stress Conditions In Vitro. Archaea 2020, 2020, 8875773. [Google Scholar] [CrossRef]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The Ruminal Microbiome Associated with Methane Emissions from Ruminant Livestock. J. Anim. Sci. Biotechnol. 2017, 8, 7. [Google Scholar] [CrossRef]
- Poulsen, M.; Schwab, C.; Borg Jensen, B.; Engberg, R.M.; Spang, A.; Canibe, N.; Højberg, O.; Milinovich, G.; Fragner, L.; Schleper, C.; et al. Methylotrophic Methanogenic Thermoplasmata Implicated in Reduced Methane Emissions from Bovine Rumen. Nat. Commun. 2013, 4, 1428. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Zhang, J.; Liu, Q.; Guo, G.; Huo, W.J.; Pei, C.X.; Chen, L.; Zhang, Y.L. Guanidinoacetic Acid and Betaine Supplementation Have Positive Effects on Growth Performance, Nutrient Digestion and Rumen Fermentation in Angus Bulls. Anim. Feed Sci. Technol 2021, 276, 114923. [Google Scholar] [CrossRef]
- Wang, C.; Liu, C.; Zhang, G.W.; Du, H.S.; Wu, Z.Z.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Pei, C.X.; et al. Effects of Rumen-Protected Folic Acid and Betaine Supplementation on Growth Performance, Nutrient Digestion, Rumen Fermentation and Blood Metabolites in Angus Bulls. Br. J. Nutr. 2020, 123, 1109–1116. [Google Scholar] [CrossRef]
- Elhendawy, W.; Zeineldin, M.; Nassif, M.; Seboussi, R.; Gomaa, N.; Donia, M.; Abdelmegeid, M. Effects of Betaine Supplementation on Heat Stress-Associated Blood Metabolites, Antioxidant Profiles and Milk Production in Dairy Cows. Egypt. J. Vet. Sci. 2025, 56, 779–789. [Google Scholar] [CrossRef]
- Peterson, S.E.; Rezamand, P.; Williams, J.E.; Price, W.; Chahine, M.; McGuire, M.A. Effects of Dietary Betaine on Milk Yield and Milk Composition of Mid-Lactation Holstein Dairy Cows. J. Dairy Sci. 2012, 95, 6557–6562. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.I.; Bilal, M.; Anwar, M.Z.; Hassan, T.; Rashid, M.A.; Tarla, D.; Dunshea, F.R.; Cheng, L. Effects of Betaine Supplementation on Dry Matter Intake, Milk Characteristics, Plasma Non-Esterified Fatty Acids, and β-Hydroxybutyric Acid in Dairy Cattle: A Meta-Analysis. J. Anim. Sci. 2024, 102, skae241. [Google Scholar] [CrossRef]
- Wang, B.; Wang, C.; Guan, R.; Shi, K.; Wei, Z.; Liu, J.; Liu, H. Effects of Dietary Rumen-Protected Betaine Supplementation on Performance of Postpartum Dairy Cows and Immunity of Newborn Calves. Animals 2019, 9, 167. [Google Scholar] [CrossRef] [PubMed]
- Löest, C.A.; Drouillard, J.; Titgemeyer, E.; Hunter, R.D.; Wessels, R.H. Betaine as a Dietary Supplement for Finishing Cattle. Kans. Agric. Exp. Stn. Res. Rep. 1998, 1, 76–78. [Google Scholar] [CrossRef]
- Bock, B.J.; Brethour, J.R.; Harmoney, K.R.; Goodall, S.R. Influence of Betaine on Pasture, Finishing, and Carcass Performance in Steers. Prof. Anim. Sci. 2004, 20, 53–57. [Google Scholar] [CrossRef]
- Parker, A.J.; Dobson, G.P.; Fitzpatrick, L.A. Physiological and Metabolic Effects of Prophylactic Treatment with the Osmolytes Glycerol and Betaine on Bos Indicus Steers during Long Duration Transportation. J. Anim. Sci. 2007, 85, 2916–2923. [Google Scholar] [CrossRef]
- Davidson, S.; Hopkins, B.A.; Odle, J.; Brownie, C.; Fellner, V.; Whitlow, L.W. Supplementing Limited Methionine Diets with Rumen-Protected Methionine, Betaine, and Choline in Early Lactation Holstein Cows. J. Dairy Sci. 2008, 91, 1552–1559. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Yang, W.Z.; Wu, J.; Zhang, W.W.; Zhang, P.; Dong, K.H.; Huang, Y.X. Effects of Betaine Supplementation on Rumen Fermentation, Lactation Performance, Feed Digestibilities and Plasma Characteristics in Dairy Cows. J. Agric. Sci. 2010, 148, 487–495. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Milner, T.C.; Garner, J.B.; Moate, P.J.; Jacobs, J.L.; Hannah, M.C.; Wales, W.J.; Marett, L.C. Dietary Fat and Betaine Supplements Offered to Lactating Cows Affect Dry Matter Intake, Milk Production and Body Temperature Responses to an Acute Heat Challenge. Animals 2021, 11, 3110. [Google Scholar] [CrossRef]
- Zhang, L.; An, W.J.; Lian, H.; Zhou, G.B.; Han, Z.Y.; Ying, S.J. Effects of Dietary Betaine Supplementation Subjected to Heat Stress on Milk Performances and Physiology Indices in Dairy Cow. Genet. Mol. Res. 2014, 13, 7577–7586. [Google Scholar] [CrossRef]
- Monteiro, A.P.A.; Bernard, J.K.; Guo, J.-R.; Weng, X.-S.; Emanuele, S.; Davis, R.; Dahl, G.E.; Tao, S. Effects of Feeding Betaine-Containing Liquid Supplement to Transition Dairy Cows. J. Dairy Sci. 2017, 100, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Raheja, N.; Kumar, N.; Lathwal, S.S. Dietary Betaine Reduces Incidence of Follicular Cyst in Post-Partum Karan Fries Cows during Hot-Humid Season. Indian J. Anim. Sci. 2019, 89, 1332–1337. [Google Scholar] [CrossRef]
- Shah, A.M.; Ma, J.; Wang, Z.; Zou, H.; Hu, R.; Peng, Q. Betaine Supplementation Improves the Production Performance, Rumen Fermentation, and Antioxidant Profile of Dairy Cows in Heat Stress. Animals 2020, 10, 634. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, H.; Wang, C.; Liu, J.; Liu, H. Effects of Dietary Rumen-Protected Betaine on Lactation Performance and Serum Metabolites of Mid-Lactation Holstein Dairy Cows. J. Agric. Food Chem. 2020, 68, 13154–13159. [Google Scholar] [CrossRef]
- Kassab, A.; Hamdon, H.; Daghash, H.; Soliman, A. Impact of Betaine Supplementation as Anti Stress on Some Hematological Parameters and Thermoregulatory Responses of Aberdeen Angus Cows in Arid Subtropical Regions. New Val. J. Agric. Sci. 2021, 1, 89–97. [Google Scholar] [CrossRef]
- Cronje, P.B. Essential Role of Methyl Donors in Animal Productivity. Anim. Prod. Sci. 2016, 58, 655–665. [Google Scholar] [CrossRef]
- Löest, C.A.; Bindel, D.J.; Titgemeyer, E.C.; Drouillard, J.S.; Blasi, D.A. Soybean hulls in roughage-free diets for limit-fed growing cattle. Kans. Agric. Exp. Stat. Res. 2017, 60–62. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Li, L.; Han, Z.; Mao, S.; Wang, G. Betaine Protects against Heat Exposure–Induced Oxidative Stress and Apoptosis in Bovine Mammary Epithelial Cells via Regulation of ROS Production. Cell Stress Chaperones 2019, 24, 453–460. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, Y.; Xu, H.; Li, L.; Hu, Y.; Liu, E.; Cui, J. Betaine Protects Bovine Mammary Epithelial Cells against LPS-Induced Inflammatory Response and Oxidative Damage via Modulating NF-κB and Nrf2 Signalling Pathway. Ital. J. Anim. Sci. 2022, 21, 859–869. [Google Scholar] [CrossRef]
- Kim, M.J. Betaine Enhances the Cellular Survival via Mitochondrial Fusion and Fission Factors, MFN2 and DRP1. Anim. Cells Syst. 2018, 22, 289–298. [Google Scholar] [CrossRef]
- Lee, I. Betaine Is a Positive Regulator of Mitochondrial Respiration. Biochem. Biophys. Res. Commun. 2015, 456, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Nakai, T.; Sato, T.; Teramura, M.; Sadoya, H.; Ohtani, M.; Takahashi, T.; Kida, K.; Hidaka, S. The Effect of a Continuous Supply of Betaine on the Degradation of Betaine in the Rumen of Dairy Cows. Biosci. Biotechnol. Biochem. 2013, 77, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Fernández, C.; López-Saez, A.; Gallego, L.; de la Fuente, J.M. Effect of Source of Betaine on Growth Performance and Carcass Traits in Lambs. Anim. Feed Sci. Technol. 2000, 86, 71–82. [Google Scholar] [CrossRef]
- Fernández, C.; Sánchez-Seiquer, P.; Sánchez, A.; Contreras, A.; de la Fuente, J.M. Influence of Betaine on Milk Yield and Composition in Primiparous Lactating Dairy Goats. Small Rumin. Res. 2004, 52, 37–43. [Google Scholar] [CrossRef]
- Ghoneem, W.M.A.; El-Tanany, R.R.A. Impact of Natural Betaine Supplementation on Rumen Fermentation and Productive Performance of Lactating Damascus Goats. Trop. Anim. Health Prod. 2023, 55, 123. [Google Scholar] [CrossRef]
- Sánchez, P.; Muelas, R.; Sánchez, A.; Rubert, J.; Montanel, J.; Luengo, C.; Contreras, A.; Fernández, C. Influence of betaine on somatic cell count and goat milk composition. In Proceedings of the Annual Meeting of European Association for Animal Production, Budapest, Hungary, 26–29 August 2001. [Google Scholar]
- Fernández, C.; Gallego, L.; Lopez-Bote, C.J. Effect of Betaine on Fat Content in Growing Lambs. Anim. Feed Sci. Technol. 1998, 73, 329–338. [Google Scholar] [CrossRef]
- Banskalieva, V.; Puchala, R.; Goetsch, A.L.; Luo, J.; Sahlu, T. Effects of Ruminally Protected Betaine and Choline on Net Flux of Nutrients across the Portal-Drained Viscera and Liver of Meat Goat Wethers Consuming Diets Differing in Protein Concentration. Small Rumin. Res. 2005, 57, 193–202. [Google Scholar] [CrossRef]
- Dong, L.; Zhong, Z.X.; Cui, H.H.; Wang, S.N.; Luo, Y.; Yu, L.H.; Loor, J.J.; Wang, H.R. Effects of Rumen-Protected Betaine Supplementation on Meat Quality and the Composition of Fatty and Amino Acids in Growing Lambs. Animal 2020, 14, 435–444. [Google Scholar] [CrossRef]
- Brougham, B.-J.; Weaver, A.C.; Swinbourne, A.M.; Cottrell, J.J.; Kelly, J.M.; Kleemann, D.O.; van Wettere, W.H.E.J. Supplementing Dietary Betaine during Late Gestation Increases Plasma Betaine and Methionine Concentrations in Pregnant Merino Ewes but Not Neonatal Lambs. Small Rumin. Res. 2024, 232, 107226. [Google Scholar] [CrossRef]
- Sahraei, H.R.; Kiani, A.; Azarfar, A.; Khamisabadi, H. Effect of Late Gestational Betaine Supplementation on Intermediate Metabolites, Homocysteine and Lipid Peroxidation in Pregnant Ewes and Their Offspring. Iran. J. Appl. Anim. Sci. 2020, 10, 483–489. [Google Scholar]
- Yu, L.; Jin, Y.; Cui, H.; Luo, Y.; Dong, L.; Wang, H. Effects of Dietary Rumen-Protected Betaine Supplementation on the Antioxidant Status of Lambs. Livest. Sci. 2020, 237, 104026. [Google Scholar] [CrossRef]
- Cai, Y.; Deng, M.; Zhang, Q.; Liu, Z.; Wang, L.; Sheng, W.; Zhang, Y.; You, P.; Wang, Z.; Wang, F. Effects of Dietary Betaine Supplementation on Biochemical Parameters of Blood and Testicular Oxidative Stress in Hu Sheep. Theriogenology 2021, 164, 65–73. [Google Scholar] [CrossRef]
- Liu, K.; Li, F.; Tang, D.F.; Li, F.D.; Liang, Y.S.; Li, G.Z.; Deng, Y. Effects of Betaine and Rumen-Protected Fat on Finishing Production Performance and Regulation of Digestion and Metabolism in Hu Sheep. Pratacultural Sci. 2016, 33, 2565–2575. [Google Scholar]
- Dangi, S.S.; Dangi, S.K.; Chouhan, V.S.; Verma, M.R.; Kumar, P.; Singh, G.; Sarkar, M. Modulatory Effect of Betaine on Expression Dynamics of HSPs during Heat Stress Acclimation in Goat (Capra Hircus). Gene 2016, 575, 543–550. [Google Scholar] [CrossRef] [PubMed]
- DiGiacomo, K.; Simpson, S.; Leury, B.J.; Dunshea, F.R. Dietary Betaine Impacts the Physiological Responses to Moderate Heat Conditions in a Dose Dependent Manner in Sheep. Animals 2016, 6, 51. [Google Scholar] [CrossRef]
- Brougham, B.-J.; Weaver, A.C.; Swinbourne, A.M.F.; Lewis Baida, B.E.; Kelly, J.M.; Walker, S.K.; Kleemann, D.O.; van Wettere, W.H.E.J. Maternal Supplementation with Dietary Betaine during Gestation to Improve Twin Lamb Survival. Animals 2020, 10, 1749. [Google Scholar] [CrossRef]
- DiGiacomo, K.; Simpson, S.; Leury, B.J.; Dunshea, F.R. Dietary Betaine Impacts Metabolic Responses to Moderate Heat Exposure in Sheep. Animals 2023, 13, 1691. [Google Scholar] [CrossRef]
- Brougham, B.-J.; Weaver, A.C.; Swinbourne, A.M.; Tscharke, M.R.; Munn, A.L.; Kelly, J.M.; Kleemann, D.O.; van Wettere, W.H.E.J. Maternal Supplementation with Dietary Betaine during Late Gestation Increased Ewe Plasma Creatine and Lamb Thermoregulation under Field Conditions. Animals 2024, 14, 2605. [Google Scholar] [CrossRef]
Source | Dosage | Breed and Category | Diet Type | Main Effects 1 | Reference |
---|---|---|---|---|---|
Feed-grade betaine | 10.5, 21 g/d | Not reported, steers | Steam-flaked and dry-rolled corn | FI, D%, CC | [200] |
Feed-grade betaine | 10.5, 21 g/d | Various breed, steers | Steam-flaked and dry-rolled corn | DMI, D%, CC | [184] |
Feed-grade betaine | 20 g/d | Aberdeen Angus, steers | 50:50 rolled corn:rolled milo | ADG, FT | [201] |
Feed-grade betaine | 0.25 g/kg of BW | Zebu, steers | Not reported | TrS | [202] |
Rumen-protected betaine | 45 g/d | Holstein, lactating cows | Corn silage-based TMR 2 | STC; LDL | [203] |
Anhydrous betaine | 50, 100, 150 g/d | Holstein, lactating cows | Corn silage-based TMR | MY, FCM, %F, RpH, TrVFA, A:Pr; Nd; NEFA, BHB | [204] |
Rumen-unprotected betaine | 25, 50, 100 g/d | Holstein, lactating cows | Triticale silage-based TMR | MY; %P | [205] |
Feed-grade betaine | 10, 15, 20 g/d | Holstein, lactating cows | Corn silage-based TMR | FI, MY; %L; %P, T-AOC, MDA, SOD, CPK | [206] |
Feed-grade betaine | 57 and 114 mg/kg BW | Holstein, lactating cows | Hay-based TMR | DMI, MY, BGl | [189] |
Betaine-containing molasses | 1.1 and 1.4 kg DM/d | Holstein, dry-off cows | Corn silage-based TMR | MY, %F, FCM, ECM | [207] |
Natural betaine | 2 g/kg DM | Holstein, lactating cows | Pasture with concentrate | MY, MPY, MFY, MF, CI, Ru | [185] |
Feed-grade betaine | 50 g/d | Karan Fries, lactating cows | Concentrate mixture and roughages | NEFA, Cortisol, FCy | [208] |
Feed-grade betaine | 20 g/d | Holstein, dry-off cows and newborn calves | Corn silage-based TMR | BTP, Gc | [199] |
Feed-grade betaine | 4.0 g/kg DM | Holstein, lactating cows | Corn silage-based TMR | MY, FCM, %F, Fe, Nd, TrVFA, NH3-N, Rmea, BGl, | [190] |
Feed-grade betaine | 15 and 30 g/d | Holstein, lactating cows | Corn silage-based TMR | MY, SCC, TrVFA, MCP; NH3-N, Nd, T-AOC, MDA, GSH-Px, SOD | [209] |
Rumen-protected betaine | 20 g/d | Holstein, lactating cows | Corn silage-based TMR | DMI, MY, %P, %F, %L, SCC, NEFA, PT, BGl, BUN, | [210] |
Betaine hydrochloride | 30 g/d | Aberdeen Angus cows | Concentrate mixture and wheat straw | HGB, RBC, RT, PR | [211] |
Feed-grade betaine | 80 g/d | Holstein, lactating cows | Corn silage-based TMR | Urea, ALT, SOD, BGl, MY, FCM, %F, DMI | [196] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonaiuto, G.; Federiconi, A.; Vecchiato, C.G.; Benini, E.; Mordenti, A.L. Betaine Dietary Supplementation: Healthy Aspects in Human and Animal Nutrition. Antioxidants 2025, 14, 771. https://doi.org/10.3390/antiox14070771
Buonaiuto G, Federiconi A, Vecchiato CG, Benini E, Mordenti AL. Betaine Dietary Supplementation: Healthy Aspects in Human and Animal Nutrition. Antioxidants. 2025; 14(7):771. https://doi.org/10.3390/antiox14070771
Chicago/Turabian StyleBuonaiuto, Giovanni, Alessia Federiconi, Carla Giuditta Vecchiato, Elisa Benini, and Attilio Luigi Mordenti. 2025. "Betaine Dietary Supplementation: Healthy Aspects in Human and Animal Nutrition" Antioxidants 14, no. 7: 771. https://doi.org/10.3390/antiox14070771
APA StyleBuonaiuto, G., Federiconi, A., Vecchiato, C. G., Benini, E., & Mordenti, A. L. (2025). Betaine Dietary Supplementation: Healthy Aspects in Human and Animal Nutrition. Antioxidants, 14(7), 771. https://doi.org/10.3390/antiox14070771