Deciphering Antioxidant Responses in Tomato Autografts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth
2.2. Grafting Technique and Healing Conditions
2.3. Sampling
2.4. Measurement of Lipid Peroxidation
2.5. Measurement of H2O2 Content
2.6. Measurement of Total Antioxidant Capacity (TAC)
2.7. Measurement of Antioxidant Enzymatic Activities
2.8. Statistical Analyses
3. Results
3.1. Oxidative Damage Measured as Lipid Peroxidation
3.2. Total Antioxidant Capacity in Grafted Tissues
3.3. Assay of Antioxidant Enzymes Activities
3.4. Superoxide Dismutase
3.5. Catalase
3.6. Class III Peroxidase
3.7. Malate Dehydrogenase
3.8. Ascorbate Peroxidase and Glutathione Reductase
3.9. Multivariate Analysis: Principal Component Analysis
4. Discussion
4.1. Oxidative Damage Appears to Be Controlled During Grafting in Tissues Close to the Cut Zone
4.2. Total Antioxidant Capacity Increases in Tissues Close to the Cut Zone, Likely Controlling Oxidative Damage
4.3. During Graft Healing, Changes in Antioxidant Activities Have Been Observed to Be Associated with Scion Tissues
4.4. SOD and CAT Activities Increase During Graft Healing in Scion Tissues
4.5. What About Non-Functional Grafts?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A-POX | ascorbate peroxidase |
CIII-POX | class III peroxidase |
CAT | catalase |
DAG | days after grafting |
GR | glutathione reductase |
HAG | hours after grafting |
LIPOX | lipid peroxidation |
MD | malate dehydrogenase |
MDA | malondialdehyde |
PCA | principal component analysis |
POX | peroxidase |
ROS | reactive oxygen species |
SOD | superoxide dismutase |
TAC | total antioxidant capacity |
References
- Feng, M.; Augstein, F.; Kareem, A.; Melnyk, C.W. Plant grafting: Molecular mechanisms and applications. Mol. Plant 2024, 17, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Kyriacou, M.C.; Rouphael, Y.; Colla, G.; Zrenner, R.; Schwarz, D. Vegetable grafting: The implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Front. Plant Sci. 2017, 8, 741. [Google Scholar] [CrossRef] [PubMed]
- Argento, S.; Treccarichi, S.; Melilli, M.G.; Branca, F. Grafting compatibility and environmental conditions on soilless eggplant (Solanum melongena) grown in the Mediterranean greenhouse. Horticulturae 2023, 9, 1060. [Google Scholar] [CrossRef]
- Bento da Silva, E.P.P.; Mendonça, S.R.; de Moraes, M.G. Trends and gaps in tomato grafting literature: A systematic approach. Span. J. Agric. Res. 2023, 21, e0904. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, P.; Kumar, A.; Kyriacou, M.C.; Colla, G.; Rouphael, Y. Grafting tomato as a tool to improve salt tolerance. Agronomy 2020, 10, 263. [Google Scholar] [CrossRef]
- Zeist, A.R.; Henschel, J.M.; Silva Júnior, A.D.; Oliveira, G.J.A.; Neto, J.G.; Beauboeuf, C.B.; Parthasarathi, T.; de Resendee, J.T.V. Responses of rootstocks variability to tolerate salinity in tomato. S. Afr. J. Bot. 2023, 153, 280–289. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Cao, B.; Chen, Z.; Xu, K. The effectiveness of grafting to improve drought tolerance in tomato. Plant Growth Regul. 2020, 91, 157–167. [Google Scholar] [CrossRef]
- Khapte, P.S.; Kumar, P.; Wakchaure, G.C.; Jangid, K.K.; Colla, G.; Cardarelli, M.; Rane, J. Application of phenomics to elucidate the influence of rootstocks on drought response of tomato. Agronomy 2022, 12, 1529. [Google Scholar] [CrossRef]
- Nakano, K. Mechanisms of resistance to Ralstonia solanacearum in tomato rootstocks and integrated management of bacterial wilt using high grafting. J. Gen. Plant Pathol. 2021, 87, 398–402. [Google Scholar] [CrossRef]
- Saman, P.; Kawicha, P.; Sangdee, A.; Wongpakdee, S.; Rattanapolsan, L.; Ponpang-Nga, P.; Suwor, P.; Thanyasiriwat, T. Grafting compatibility, scion growth, and fusarium wilt disease incidence of intraspecific grafted tomato. J. Hortic. Res. 2022, 30, 95–104. [Google Scholar] [CrossRef]
- Nanda, A.K.; Melnyk, C.W. The role of plant hormones during grafting. J. Plant Res. 2018, 131, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Xie, L.; Dong, C.; Gao, L.; Shang, Q. Stage-specific events in tomato graft formation and the regulatory effects of auxin and cytokinin. Plant Sci. 2021, 304, 110803. [Google Scholar] [CrossRef] [PubMed]
- Frey, C.; Manga-Robles, A.; Acebes, J.L.; Encina, A. The graft framework: Quantitative changes in cell wall matrix polysaccharides throughout the tomato graft union formation. Carbohydr. Polym. 2022, 276, 118781. [Google Scholar] [CrossRef]
- Loupit, G.; Brocard, L.; Ollat, N.; Cookson, S.J. Grafting in plants: Recent discoveries and new applications. J. Exp. Bot. 2023, 74, 2433–2447. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zhang, F.; Meng, X.; Shang, Q. Spatio-temporal dynamics of phytohormones in the tomato graft healing process. Hortic. Plant J. 2024, 10, 1362–1370. [Google Scholar] [CrossRef]
- Frey, C.; Saez-Aguayo, S.; Encina, A.; Acebes, J.L. Deepening the role of pectin in the tissue assembly process during tomato grafting. Plants 2024, 13, 3519. [Google Scholar] [CrossRef] [PubMed]
- Savatin, D.V.; Gramegna, G.; Modesti, V.; Cervone, F. Wounding in the plant tissue: The defence of a dangerous passage. Front. Plant Sci. 2014, 5, 470. [Google Scholar] [CrossRef]
- Vega-Muñoz, I.; Duran-Flores, D.; Fernández-Fernández, Á.D.; Heyman, J.; Ritter, A.; Stael, S. Breaking bad news: Dynamic molecular mechanisms of wound response in plants. Front. Plant Sci. 2020, 11, 610445. [Google Scholar] [CrossRef]
- Chen, G.; Lips, S.H.; Sagi, M. Biomass production, transpiration rate and endogenous abscisic acid levels in grafts of flacca and wild-type tomato (Lycopersicon esculentum). Funct. Plant Biol. 2002, 29, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.J.; Osório, M.L.; Osório, J.; Barrote, I.; Martins, M.; David, M.M. Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. Environ. Exp. Bot. 2006, 58, 75–84. [Google Scholar] [CrossRef]
- Frey, C.; Hernández-Barriuso, A.; Encina, A.; Acebes, J.L. Non-invasive monitoring of tomato graft dynamics using thermography and fluorescence quantum yields measurements. Physiol. Plant. 2023, 175, e13935. [Google Scholar] [CrossRef]
- Aroca, R.; Ruiz-Lozano, J.M.; Zamarreño, A.M.; Paz, J.A.; García-Mina, J.M.; Pozo, M.J.; López-Ráez, J.A. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 2013, 170, 47–55. [Google Scholar] [CrossRef]
- Havaux, M. Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant. Cell Environ. 1993, 16, 461–467. [Google Scholar] [CrossRef]
- Mittler, R. ROS are good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef]
- Babar, M.; Afzal, N.; Siddiqui, K.; Azhar, A.; Galani, S. Exploring graft incompatibility markers: Intraspecific and interspecific grafts of tomato (Solanum lycopersicum L.). Sci. Hort. 2023, 310, 111762. [Google Scholar] [CrossRef]
- Miller, G.; Shulaev, V.; Mittler, R. Reactive oxygen signaling and abiotic stress. Physiol. Plant. 2008, 33, 481–489. [Google Scholar] [CrossRef]
- Baxter, A.; Mittler, R.; Suzuki, N. ROS as key players in plant stress signalling. J. Exp. Bot. 2014, 65, 1229–1240. [Google Scholar] [CrossRef]
- Aloni, B.; Karni, L.; Deventurero, G.; Levin, Z.; Cohen, R.; Katzir, N.; Lotan-Pompan, M.; Edelstein, M.; Aktas, H.; Turhan, E.; et al. Physiological and biochemical changes at the rootstock–scion interface in graft combinations between Cucurbita rootstocks and a melon scion. J. Hortic. Sci. Biotechnol. 2008, 83, 777–783. [Google Scholar] [CrossRef]
- Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Mol. Biol. 1998, 49, 249–279. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Kunert, K. The ascorbate–glutathione cycle coming of age. J. Exp. Bot. 2024, 75, 2682–2699. [Google Scholar] [CrossRef]
- Du, Z.; Bramlage, W.J. Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J. Agric. Food Chem. 1992, 40, 1566–1570. [Google Scholar] [CrossRef]
- Cheeseman, J.M. Hydrogen peroxide concentrations in leaves under natural conditions. J. Exp. Bot. 2006, 57, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Aranaz, M.; Costas-Rodríguez, M.; Lobo, L.; González-Iglesias, H.; Pereiro, R.; Vanhaecke, F. Homeostatic alterations related to total antioxidant capacity, elemental concentrations and isotopic compositions in aqueous humor of glaucoma patients. Anal. Bioanal. Chem. 2022, 414, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Droillard, M.J.; Paulin, A.; Massot, J.C. Free radical production, catalase and superoxide dismutase activities and membrane integrity during senescence of petals of cut carnations (Dianthus caryophyllus). Physiol. Plant. 1987, 71, 197–202. [Google Scholar] [CrossRef]
- Ádám, A.; Bestwick, C.; Barna, B.; Mansfield, J. Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaeolicola. Planta 1995, 197, 240–249. [Google Scholar]
- Corpas, J.F.; Barroso, B.F.; Sandalio, M.L.; Distefano, S.; Palma, M.J.; Lupiáñez, J.A.; del Río, A.L. A dehydrogenase-mediated recycling system of NADPH in plant peroxisomes. Biochem. J. 1998, 330, 777–784. [Google Scholar] [CrossRef]
- Hossain, M.A.; Asada, K. Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: Its protection by ascorbate. Plant Cell Physiol. 1984, 25, 1285–1295. [Google Scholar]
- Edwards, E.A.; Rawsthorne, S.; Mullineaux, P.M. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 1990, 180, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R Package Version 1; 2020; p. 7. Available online: https://cran.r-project.org/web/packages/factoextra/index.html (accessed on 12 December 2024).
- Lê, S.; Josse, J.; Husson, F. FactorMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. Available online: https://www.jstatsoft.org/article/view/v025i01 (accessed on 12 December 2024). [CrossRef]
- Warnes, G.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Liaw, W.H.A.; Lumley, T.; Magnusson, A.; Moeller, S.; Schwartz, M.; Venables, B. Gplots: Various R Programming Tools for Plotting Data; R package version 3; 2020; p. 1. Available online: https://cran.r-project.org/web/packages/gplots/gplots.pdf (accessed on 12 December 2024).
- Frey, C.; Martínez-Romera, N.; Encina, A.; Acebes, J.L. Immunohistochemical dynamics of cell wall matrix polymers during tomato autograft healing. Plant Mol. Biol. 2023, 113, 353–365. [Google Scholar] [CrossRef]
- Irisarri, P.; Binczycki, P.; Errea, P.; Juel, H.; Pina, A. Oxidative stress associated with rootstock–scion interactions in pear/quince combinations during early stages of graft development. J. Plant Physiol. 2015, 176, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Minibayeva, F.; Beckett, R.P.; Kranner, I. Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry 2015, 112, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Arnaud, D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef]
- Pina, A.; Cookson, S.J.; Calatayud, A.; Trinchera, A.; Errea, P. Physiological and molecular mechanisms underlying graft compatibility. In Vegetable Grafting: Principles and Practices; Colla, G., Pérez-Alfocea, F., Schwarz, D., Eds.; CABI Publishing: Wallingford, UK, 2017; pp. 132–154. [Google Scholar]
- Pisoschi, A.M.; Negulescu, G.P. Methods for total antioxidant activity determination: A review. Biochem. Anal. Biochem. 2011, 1, 106. [Google Scholar] [CrossRef]
- Schauss, A.G.; Wu, X.; Prior, R.L.; Ou, B.; Huang, D.; Owens, J.; Agarwal, A.; Jensen, G.S.; Hart, A.N.; Shanbrom, E. Antioxidant capacity and other bioactivities of the freeze-dried amazonian palm berry, Euterpe oleraceae Mart. (Acai). J. Agric. Food Chem. 2006, 54, 8604–8610. [Google Scholar] [CrossRef] [PubMed]
- Del Río, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Del Río, L.A. ROS and RNS in plant physiology: An overview. J. Exp. Bot. 2015, 66, 2827–2837. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Anjum, N.A.; Gill, R.; Yadav, S.; Hasanuzzaman, M.; Fujita, M.; Mishra, P.; Sabat, S.C.; Tuteja, N. Superoxide dismutase—Mentor of abiotic stress tolerance in crop plants. Environ. Sci. Pollut. Res. 2015, 22, 10375–10394. [Google Scholar] [CrossRef] [PubMed]
- Queval, G.; Issakidis-Bourguet, E.; Hoeberichts, F.A.; Vandorpe, M.; Gakiere, B.; Vanacker, H.; Miginiac-Maslow, M.; Van Breusegem, F.; Noctor, G. Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J. 2007, 52, 640–657. [Google Scholar] [PubMed]
- Lee, C.; Harvey, J.T.; Qin, K.; Leskovar, D. Physio-biochemical responses of grafted tomatoes differing in thermotolerance to heat stress and recovery. Sci. Hortic. 2023, 308, 111546. [Google Scholar] [CrossRef]
- Fernández-García, N.; Carvajal, M.; Olmos, E. Graft union formation in tomato plants: Peroxidase and catalase involvement. Ann. Bot. 2004, 93, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Mhamdi, A.; Chaouch, S.; Han, Y.; Neukermans, J.; Marquez-Garcia, B.; Queval, G.; Foyer, C.H. Glutathione in plants: An integrated overview. Plant Cell Environ. 2012, 35, 454–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Zhao, Y.; Han, G.; Zhu, S. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response. Gene 2015, 566, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Francoz, E.; Ranocha, P.; Nguyen-Kim, H.; Jamet, E.; Burlat, V.; Dunand, C. Roles of cell wall peroxidases in plant development. Phytochemistry 2015, 112, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Frey, C.; Álvarez, R.; Encina, A.; Acebes, J.L. Tomato graft union failure is associated with alterations in tissue development and onset of cell wall defense responses. Agronomy 2021, 11, 1197. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frey, C.; Hernández-Barriuso, A.; Acebes, J.L.; Encina, A. Deciphering Antioxidant Responses in Tomato Autografts. Antioxidants 2025, 14, 234. https://doi.org/10.3390/antiox14020234
Frey C, Hernández-Barriuso A, Acebes JL, Encina A. Deciphering Antioxidant Responses in Tomato Autografts. Antioxidants. 2025; 14(2):234. https://doi.org/10.3390/antiox14020234
Chicago/Turabian StyleFrey, Carlos, Andrés Hernández-Barriuso, José Luis Acebes, and Antonio Encina. 2025. "Deciphering Antioxidant Responses in Tomato Autografts" Antioxidants 14, no. 2: 234. https://doi.org/10.3390/antiox14020234
APA StyleFrey, C., Hernández-Barriuso, A., Acebes, J. L., & Encina, A. (2025). Deciphering Antioxidant Responses in Tomato Autografts. Antioxidants, 14(2), 234. https://doi.org/10.3390/antiox14020234