Effectiveness of Common Extraction Solvents in Obtaining Antioxidant Compounds from African Medicinal Plants
Abstract
1. Introduction
2. Ethanolic Extraction
Duration of Ethanolic Extraction
| Plant Species | Solvent/Method | Key Findings | Citation |
|---|---|---|---|
| Azadirachta indica (bark), Acalypha wilkesiana (leaves), Solanum scabrum (leaves) | Ethanol | The ethanol extract of Azadirachta indica showed the highest flavonoid content. | [20] |
| Guiera senegalensis and other Sudanese medicinal plants | 50% ethanol, 70% ethanol, acetone | 50% and 70% ethanol extracts had the highest total phenolic content and displayed higher free radical scavenging activity. The 50% ethanol extract of Guiera senegalensis showed the highest DPPH radical scavenging activity. | [8] |
| Ormenis africana | Hydroethanolic extract | Displayed high polyphenol, anthocyanin, and flavonoid content, indicating significant antioxidant activity. | [21] |
| Grewia carpinifolia (stems and leaves) | Ethanolic extracts | The extracts effectively scavenged ABTS and DPPH radicals in a concentration-dependent manner. The stem extract showed higher activity in the ABTS assay. | [22] |
| Moringa oleifera (leaves) | Ethanolic extracts (maceration, ultrasound assisted extraction, Soxhlet) | The highest phenolic content and antioxidant activity were obtained with a 1 h ultrasound-assisted extraction (UAE). Longer extraction times led to a decrease in active compounds associated with alcohol evaporation or reaction with the active compounds. | [25] |
| Orthosiphon stamineus | Ethanolic extracts | Prolonged extraction times (over 240 min for phenolics, 120 min for tannins) led to a decrease in compound recovery due to oxidation. | [26] |
| Typha capensis | Water, methanol, ethanol, acetone, hexane | Ethanol crude extract yielded the highest phenolic content, while the acetone extract showed good antioxidant activity against DPPH and ABTS. | [29] |
3. Methanolic Extraction
4. Methanolic Extracts and Bioactivity
5. Aqueous Extraction
| Plant Species | Extraction Method | Key Findings and Characteristics | Citation |
|---|---|---|---|
| Moringa oleifera; various herbal teas | Infusion (pressurized hot water extraction) | Effective for extracting water-soluble compounds like polyphenols, flavonoids, and vitamins. Considered organic and safe for consumption. Preparation techniques (temperature, time) are crucial for potency. | [58,60,67] |
| Various plants including Adansonia digitata L.; Agrimonia eupatoria Krylov; Aloe ferox (Mill.), Aspalathus linearis (Burm.f.) Dahlg.; Eucomis autumnalis (Mill.) Chitt. | Decoction | Used to extract minerals and bitter compounds. The process is simple and eco-friendly, providing accurate levels of compounds for treatments like anti-cancer applications. | [61,62] |
| Catharanthus roseus; Ferulago angulata | Cold water extraction (maceration) | A slow method used for delicate compounds like enzymes and some vitamins. Water can be used after maceration with other solvents like ethanol to improve results. | [64,68] |
| Aromatic and medicinal plants | Steam distillation | Extracts volatile and aromatic compounds (essential oils) without using organic solvents, ensuring safety. Achieved a high potential (93%) for extracting essential oils in some studies. | [65,69] |
6. Application of Green Technologies in African Medicinal Plants and Challenges in Africa
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asakitikpi, A.E. Western versus African medical knowledge systems. Synth. Philos. 2018, 65, 91–104. [Google Scholar] [CrossRef]
- Licciardi, P.V.; Underwood, J.R. Plant-derived medicines: A novel class of immunological adjuvants. Int. Immunopharmacol. 2011, 11, 390–398. [Google Scholar] [CrossRef]
- Gonfa, T.; Teketle, S.; Kiros, T. Effect of extraction solvent on qualitative and quantitative analysis of major phyto-constituents and in-vitro antioxidant activity evaluation of Cadaba rotundifolia Forssk leaf extracts. Cogent Food Agric. 2020, 6, 1853867. [Google Scholar] [CrossRef]
- Rahman, T.; Hosen, I.; Islam, M.T.; Shekhar, H.U. Oxidative stress and human health. Adv. Biosci. Biotechnol. 2012, 3, 997–1019. [Google Scholar] [CrossRef]
- Martins, R.; Barbosa, A.; Advinha, B.; Sales, H.; Pontes, R.; Nunes, J. Green extraction techniques of bioactive compounds: A state-of-the-art review. Processes 2023, 11, 2255. [Google Scholar] [CrossRef]
- Geow, C.H.; Tan, M.C.; Yeap, S.P.; Chin, N.L. A review on extraction techniques and its future applications in industry. Eur. J. Lipid Sci. Technol. 2021, 123, 2000302. [Google Scholar] [CrossRef]
- Cao, S.; Liang, J.; Chen, M.; Xu, C.; Wang, X.; Qiu, L.; Zhao, X.; Hu, W. Comparative analysis of extraction technologies for plant extracts and absolutes. Front. Chem. 2025, 13, 1536590. [Google Scholar] [CrossRef]
- Dirar, A.; Alsaadi, D.; Wada, M.; Mohamed, M.; Watanabe, T.; Devkota, H. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 2019, 120, 261–267. [Google Scholar] [CrossRef]
- Chatepa, L.E.C.; Mwamatope, B.; Chikowe, I.; Masamba, K.G. Effects of solvent extraction on the phytoconstituents and in vitro antioxidant activity properties of leaf extracts of the two selected medicinal plants from Malawi. BMC Complement. Med. Ther. 2024, 24, 317. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, A.; Degu, Y.; Carlson, R. Appraisal of solvent system effect on bioactivity profiling of Cordia africana stem bark extracts. Chem. Int. 2020, 6, 1–10. [Google Scholar]
- Verschaeve, L.; Van Staden, J. Mutagenic and antimutagenic properties of extracts from South African traditional medicinal plants. J. Ethnopharmacol. 2008, 119, 575–587. [Google Scholar] [CrossRef] [PubMed]
- Mabona, U.; Viljoen, A.; Shikanga, E.; Marston, A.; Van Vuuren, S. Antimicrobial activity of southern African medicinal plants with dermatological relevance: From an ethnopharmacological screening approach to combination studies and the isolation of a bioactive compound. J. Ethnopharmacol. 2013, 148, 45–55. [Google Scholar] [CrossRef]
- Pompermaier, L.; Marzocco, S.; Adesso, S.; Monizi, M.; Schwaiger, S.; Neinhuis, C.; Stuppner, H.; Lautenschläger, T. Medicinal plants of northern Angola and their anti-inflammatory properties. J. Ethnopharmacol. 2018, 216, 26–36. [Google Scholar] [CrossRef]
- Galani, B.R.; Sahuc, M.E.; Njayou, F.N.; Deloison, G.; Mkounga, P.; Feudjou, W.F.; Brodin, P.; Rouillé, Y.; Nkengfack, A.E.; Moundipa, P.F.; et al. Plant extracts from Cameroonian medicinal plants strongly inhibit hepatitis C virus infection in vitro. Front. Microbiol. 2015, 6, 488. [Google Scholar] [CrossRef]
- Bouyahya, A.; Abrini, J.; El-Baabou, A.; Bakri, Y.; Dakka, N. Determination of phenol content and antibacterial activity of five medicinal plants ethanolic extracts from North-West of Morocco. J. Plant Pathol. Microbiol. 2016, 7, 2. [Google Scholar] [CrossRef]
- Baldé, M.A.; Tuenter, E.; Traoré, M.S.; Matheeussen, A.; Cos, P.; Maes, L.; Camara, A.; Haba, N.L.; Gomou, K.; Diallo, M.S.T.; et al. Antimicrobial investigation of ethnobotanically selected Guinean plant species. J. Ethnopharmacol. 2020, 263, 113232. [Google Scholar] [CrossRef]
- Bubalo, M.C.; Vidović, S.; Redovniković, I.R.; Jokić, S. New perspective in extraction of plant biologically active compounds by green solvents. Food Bioprod. Process. 2018, 109, 52–73. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Hikmawanti, N.P.E.; Fatmawati, S.; Asri, A.W. The effect of ethanol concentrations as the extraction solvent on antioxidant activity of Katuk (Sauropus androgynus (L.) Merr.) leaves extracts. IOP Conf. Ser. Earth Environ. Sci. 2021, 755, 012060. [Google Scholar] [CrossRef]
- Anokwuru, C.; Anyasor, G.; Ajibaye, O.; Fakoya, O.; Okebugwu, P. Effect of extraction solvents on phenolic, flavonoid and antioxidant activities of three Nigerian medicinal plants. Nat. Sci. 2011, 9, 53–61. [Google Scholar]
- Mansour, R.; Gargouri, B.; Bouaziz, M.; Elloumi, N.; Belhadj Jilani, I.; Ghrabi, Z.; Lassoued, S. Antioxidant activity of ethanolic extract of inflorescence of Ormenis africana in vitro and in cell cultures. Lipids Health Dis. 2011, 10, 78. [Google Scholar] [CrossRef]
- Adebiyi, O.E.; Olayemi, F.O.; Ning-Hua, T.; Guang-Zhi, Z. In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef Univ. J. Basic Appl. Sci. 2017, 6, 10–14. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Chuo, S.C.; Nasir, H.M.; Mohd-Setapar, S.H.; Mohamed, S.F.; Ahmad, A.; Wani, W.A.; Muddassir, M.; Alarifi, A. A glimpse into the extraction methods of active compounds from plants. Crit. Rev. Anal. Chem. 2022, 52, 667–696. [Google Scholar] [CrossRef]
- Dzieciol, M. Influence of extraction technique on yield and antioxidant activity of extracts from Moringa oleifera leaf. Pol. J. Chem. Technol. 2020, 22, 31–35. [Google Scholar] [CrossRef]
- Chew, K.; Khoo, M.; NG, S.; Thoo, Y.Y.; Aida, W.W.; Ho, C.W. Effect of ethanol concentration, extraction time and extraction temperature on the recovery of phenolic compounds and antioxidant capacity of Orthosiphon stamineus extracts. Int. Food Res. J. 2011, 18, 1427. [Google Scholar]
- Paul, A.; Laurila, T.; Vuorinen, V.; Divinski, S.V. Fick’s laws of diffusion. In Thermodynamics, Diffusion and the Kirkendall Effect in Solids; Springer International Publishing: Cham, Switzerland, 2014; pp. 115–139. [Google Scholar]
- Wendakoon, C.; Calderon, P.; Gagnon, D. Evaluation of selected medicinal plants extracted in different ethanol concentrations for antibacterial activity against human pathogens. J. Med. Act. Plants 2012, 1, 60–68. [Google Scholar]
- Ondua, M.; Njoya, E.M.; Abdalla, M.A.; Mcgaw, L.J. Anti-inflammatory and antioxidant properties of leaf extracts of eleven South African medicinal plants used traditionally to treat inflammation. J. Ethnopharmacol. 2019, 234, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Jimoh, F.O.; Sofidiya, M.O.; Afolayan, A.J. Antioxidant properties of the methanol extracts from the leaves Paulinia pinnata. J. Med. Food 2007, 10, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.G.; Koli, S.P.; Patil, D.A.; Phatak, A.V. Evaluation of extraction techniques with various solvents to determine extraction efficiency of selected medicinal plants. Int. J. Pharm. Sci. Res. 2012, 3, 2607–2612. [Google Scholar]
- Ugboko, H.U.; Nwinyi, O.C.; Oranusi, S.U.; Fatoki, T.H.; Omonhinmin, C.A. Antimicrobial importance of medicinal plants in Nigeria. Sci. World J. 2020, 2020, 7059323. [Google Scholar] [CrossRef]
- Nwozo, O.S.; Effiong, E.M.; Aja, P.M.; Awuchi, C.B. Antioxidant, phytochemical and therapeutic properties of medicinal plants: A review. Int. J. Food Prop. 2022, 26, 359–388. [Google Scholar] [CrossRef]
- Adedapo, A.A.; Jimoh, F.O.; Kuduru, S.; Afolayan, A.J.; Masika, P.J. Antibacterial and antioxidant properties of the methanol extraction of leaves and stem Calpurnia aurea. BMC Complement. Altern. Med. 2008, 8, 53. [Google Scholar] [CrossRef]
- Adedapo, A.A.; Jimoh, F.O.; Afolayan, J.; Masika, P. Antioxidant properties of the methanol extracts of the leaves and the stems of Celtis Africana. Rec. Nat. Prod. 2009, 3, 23–31. [Google Scholar]
- Badu, M.; Mensah, J.K.; Boadi, N.O. Antioxidant activity of methanol, and ethanol/water extracts of Tetrapleura tetraptera and Parkia bilogbosa. Int. J. Pharma Biosci. 2012, 3, 312–321. [Google Scholar]
- Konan, Y.; Witabouna, K.M.; Bassirou, B.; Kagoriye, K. Antioxidant activity and total phenolic content of nine plants from Cộte d’Ivore (West Africa). J. Appl. Pharm. Sci. 2014, 4, 36–41. [Google Scholar]
- Hussein, E.A.; Thron, C.; Ghaziasgar, M.; Vaccari, M.; Marnewick, J.L.; Hussein, A.A. Comparison of phenolic content and antioxidant activity for fermented and unfermented Rooibos samples extracted with water and methanol. Plants 2021, 11, 16. [Google Scholar] [CrossRef]
- Mehmood, A.; Javid, S.; Khan, M.F.; Ahmad, K.S.; Mustafa, A. In vitro total phenolics, total flavonoids, antioxidant and antibacterial activities of selected medicinal plants using different solvent systems. BMC Chem. 2022, 16, 64. [Google Scholar] [CrossRef] [PubMed]
- Falleh, H.; Ksouri, R.; Lucchessi, M.E.; Abdelly, C.; Magné, C. Ultrasound-assisted extraction: Effect of extraction time and solvent power on the levels of polyphenols and antioxidant activity of Mesembryanthemum edule L. Aizoaceae shoots. Trop. J. Pharm. Res. 2012, 11, 243–249. [Google Scholar] [CrossRef]
- Bhebhe, M.; Füller, T.N.; Chipurura, B.; Muchuweti, M. Effect of Solvent type on Total phenolic content, Free radical scavenging activity of black tea and infusions. Food Anal. Methods 2016, 9, 1060–1067. [Google Scholar] [CrossRef]
- Chah, K.F.; Eze, C.A.; Emuelosi, C.E.; Esimone, C.O. Antibacterial and wound healing properties of methanolic extracts of some Nigerian medicinal plants. J. Ethnopharmacol. 2006, 104, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Stanković, N.; Mihajilov-Krstev, T.; Zlatković, B.; Stankov-Jovanović, V.; Mitić, V.; Jović, J.; Čomić, L.; Kocić, B.; Bernstein, N. Antibacterial and antioxidant activity of traditional medicinal plants from the Balkan Peninsula. NJAS-Wagening. J. Life Sci. 2016, 78, 21–28. [Google Scholar] [CrossRef]
- Lin, J.; Opoku, A.R.; Geheeb-Keller, M.; Hutchings, A.D.; Terblanche, S.E.; Jӓger, A.K.; Van Staden, J. Preliminary screening of some Zulu traditional medicinal plants for anti-inflammatory and anti-microbial activities. J. Ethnopharmacol. 1999, 68, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Oldoni, T.L.C.; Merlin, N.; Karling, M.; Carpes, S.T.; de Alencar, S.M.; Morales, R.G.F.; da Silva, E.A.; Pilau, E.J. Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil. Food Res. Int. 2019, 125, 108647. [Google Scholar] [CrossRef] [PubMed]
- Amri, O.; Elguiche, R.; Tahrouch, S.; Zekhnini, A.; Hatimi, A. Antifungal and antioxidant activities of some aromatic and medicinal plants from the southwest of Morocco. J. Chem. Pharm. Res. 2015, 7, 672–678. [Google Scholar]
- Adewusi, E.A.; Steenkamp, V. In vitro screening of acetylcholinesterase inhibition and antioxidant of medicinal plants from southern Africa. Asian Pac. J. Trop. Med. 2011, 4, 829–835. [Google Scholar] [CrossRef]
- Amoo, S.O.; Aremu, A.O.; Moyo, M.; Van Staden, J. Antioxidant and acetylcholinesterase-inhibitory properties of long-term stored medicinal plants. BMC Complement. Altern. Med. 2012, 12, 87. [Google Scholar] [CrossRef]
- Mahlo, S.M.; Mcgaw, L.J.; Eloff, J.N. Antifungal activity of leaf extracts from South African trees against plant pathogens. Crop Prot. 2010, 29, 1529–1533. [Google Scholar] [CrossRef]
- Tshibangu, J.N.; Chifundera, K.; Kaminsky, R.; Wright, A.D.; Kӧnig, G.M. Screening of African medicinal plants for antimicrobial and enzyme inhibitory activity. J. Ethnopharmacol. 2002, 80, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Tagne, R.S.; Telefo, B.P.; Nyemb, J.N.; Yemele, D.M.; Njina, S.N.; Goka, S.M.C.; Lienou, L.L.; Kamdje, A.H.N.; Moundipa, P.F.; Farooq, A.D. Anticancer and antioxidant activities of methanol extracts and fractions of some Cameroonian medicinal plants. Asian Pac. J. Trop. Med. 2014, 7, S442–S447. [Google Scholar] [CrossRef]
- Masuku, N.P.; Unuofin, J.O.; Lebelo, S.L. Phytochemical content, antioxidant activities and androgenic properties of four South African medicinal plants. J. Herbmed Pharmacol. 2020, 9, 245–256. [Google Scholar] [CrossRef]
- Ancolio, C.; Azas, N.; Mahiou, V.; Ollivier, E.; Di Giorgio, C.; Keita, A.; Timon-David, P.; Balansard, G. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2002, 16, 646–649. [Google Scholar] [CrossRef]
- Gebashe, F.; Aremu, A.O.; Gruz, J.; Finnie, J.F.; Van Staden, J. Phytochemical profiles and antioxidant activity of grasses used in South African traditional medicine. Plants 2020, 9, 371. [Google Scholar] [CrossRef]
- Atawodi, S.E.; Atawodi, J.C.; Idakwo, G.A.; Pfundstein, B.; Haubner, R.; Wurtele, G.; Bartsch, H.; Owen, R.W. Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem, and root barks of Moringa oleifera Lam. J. Med. Food 2010, 13, 710–716. [Google Scholar] [CrossRef]
- Huang, Z.; Hashida, K.; Makino, R.; Kawamura, F.; Shimizu, K.; Kondo, R.; Ohara, S. Evaluation of biological activities of extracts from 22 African tropical wood species. J. Wood Sci. 2009, 55, 225–229. [Google Scholar] [CrossRef]
- Ncama, K.; Mditshwa, A.; Tesfay, S.Z.; Mbili, N.C.; Magwaza, L.S. Topical procedures adopted in testing and application of plant-based extracts as bio-fungicides in controlling postharvest decay of fresh produce. Crop Prot. 2019, 115, 142–151. [Google Scholar] [CrossRef]
- Rodríguez-Soalleiro, R.; Eimil-Fraga, C.; Gómez-García, E.; García-Villabrille, J.D.; Rojo-Alboreca, A.; Muñoz, F.; Oliveira, N.; Sixto, H.; Pérez-Cruzado, C. Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry. For. Ecosyst. 2018, 5, 35. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Pham, H.N.T.; Negus, C. From herbal teabag to infusion—Impact of brewing on polyphenols and antioxidant capacity. Beverages 2022, 8, 81. [Google Scholar] [CrossRef]
- Cittan, M.; Altuntaş, E.; Çelik, A. Evaluation of antioxidant capacities and phenolic profiles in Tilia cordata fruit extracts: A comparative study to determine the efficiency of traditional hot water infusion method. Ind. Crops Prod. 2018, 122, 553–558. [Google Scholar] [CrossRef]
- Hlatshwayo, S.; Thembane, N.; Krishna, S.B.N.; Gqaleni, N.; Ngcobo, M. Extraction and processing of bioactive phytoconstituents from widely used South African medicinal plants for the preparation of effective traditional herbal medicine products: A narrative review. Plants 2025, 14, 206. [Google Scholar] [CrossRef]
- Hidayat, R.; Wulandari, P. Methods of extraction: Maceration, percolation and decoction. Eureka Herba Indones. 2021, 2, 68–74. [Google Scholar] [CrossRef]
- Charuka, M.; Bandara, U. Decoction, Boiling and Solvent Extraction Methods in Extraction of Anticancer Compounds from Natural Plants. Transform. Appl. Res. Comput. Eng. Sci. Technol. 2025, 111–117. [Google Scholar]
- Benchaachoua, A.; Bessam, H.M.; Saidi, I.; Bel-Abbes, S. Effects of different extraction methods and solvents on the phenolic composition and antioxidant activity of Silybum marianum leaves extracts. Int. J. Med. Sci. Clin. Invent. 2018, 5, 3641–3647. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Nateghi, L.; Javanmard Dakheli, M.; Ramezan, Y.; Piravi-Vanak, Z. Maceration and ultrasound-assisted methods used for extraction of phenolic compounds and antioxidant activity from Ferulago angulata. J. Food Process. Preserv. 2022, 46, e16356. [Google Scholar] [CrossRef]
- Radwan, M.N.; Morad, M.; Ali, M.; Wasfy, K.I. A solar steam distillation system for extracting lavender volatile oil. Energy Rep. 2020, 6, 3080–3087. [Google Scholar] [CrossRef]
- Matshediso, P.G.; Cukrowska, E.; Chimuka, L. Development of pressurised hot water extraction (PHWE) for essential compounds from Moringa oleifera leaf extracts. Food Chem. 2015, 172, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Chantigny, M.H.; Harrison-Kirk, T.; Curtin, D.; Beare, M. Temperature and duration of extraction affect the biochemical composition of soil water-extractable organic matter. Soil Biol. Biochem. 2014, 75, 161–166. [Google Scholar] [CrossRef]
- Valderrama, F.; Ruiz, F. An optimal control approach to steam distillation of essential oils from aromatic plants. Comput. Chem. Eng. 2018, 117, 25–31. [Google Scholar] [CrossRef]
- Cacique, A.P.; Barbosa, É.S.; Pinho, G.P.D.; Silvério, F.O. Maceration extraction conditions for determining the phenolic compounds and the antioxidant activity of Catharanthus roseus (L.) G. Don. Ciência E Agrotecnologia 2020, 44, e017420. [Google Scholar] [CrossRef]
- Usman, M.; Nakagawa, M.; Cheng, S. Emerging trends in green extraction techniques for bioactive natural products. Processes 2023, 11, 3444. [Google Scholar] [CrossRef]
- Darwin, R.; Valmon, R.; Chithanna, S.; Galla, S.H.; Syed, S.H.; Mohathasim Billah, A.A.; Kumar Reddy, K.T.; Arjun, U.V.N.V. Sustainable Extraction and Purification of Phytochemicals: A Review of Green Solvents and Techniques. Chem. Methodol. 2025, 9, 356–385. [Google Scholar]
- Azwanida, N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants 2015, 4, 196. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef] [PubMed]
- Carpentieri, S.; Soltanipour, F.; Ferrari, G.; Pataro, G.; Donsì, F. Emerging green techniques for the extraction of antioxidants from agri-food by-products as promising ingredients for the food industry. Antioxidants 2021, 10, 1417. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Oliver, M.; Ponce-Alquicira, E. Environmentally friendly techniques and their comparison in the extraction of natural antioxidants from green tea, rosemary, clove, and oregano. Molecules 2021, 26, 1869. [Google Scholar] [CrossRef]
- Hussain, Z.T.E.; Yagi, S.; Mahomoodally, M.F.; Mohammed, I.; Zengin, G. A comparative study of different solvents and extraction techniques on the antioxidant and enzyme inhibitory activities of Adansonia digitata L. (Baobab) fruit pulp. South Afr. J. Bot. 2019, 126, 207–213. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Drouet, S.; Kabra, A.; Hano, C. Enrichment in antioxidant flavonoids of stamen extracts from Nymphaea lotus L. using ultrasonic-assisted extraction and macroporous resin adsorption. Antioxidants 2020, 9, 576. [Google Scholar] [CrossRef]
- Tessema, F.B.; Gonfa, Y.H.; Asfaw, T.B.; Tadesse, M.G.; Tadesse, T.G.; Bachheti, A.; Alshaharni, M.O.; Kumar, P.; Kumar, V.; Širić, I.; et al. Targeted HPTLC profile, quantification of flavonoids and phenolic acids, and antimicrobial activity of Dodonaea angustifolia (Lf) leaves and flowers. Molecules 2023, 28, 2870. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, H.; Wang, M.; Zhao, S.; Sun, G.; Li, Z. Recent advancements in microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2025, 18, 2083–2100. [Google Scholar] [CrossRef]
- Esclapez, M.D.; García-Pérez, J.V.; Mulet, A.; Cárcel, J.A. Ultrasound-assisted extraction of natural products. Food Eng. Rev. 2011, 3, 108–120. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Taher, Z.M.; Rahmat, Z.; Chua, L.S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef] [PubMed]
- Matias, D.; Nicolai, M.; Fernandes, A.S.; Saraiva, N.; Almeida, J.; Saraiva, L.; Faustino, C.; Díaz-Lanza, A.M.; Reis, C.P.; Rijo, P. Comparison study of different extracts of Plectranthus madagascariensis, P. neochilus and the rare P. porcatus (Lamiaceae): Chemical characterization, antioxidant, antimicrobial and cytotoxic activities. Biomolecules 2019, 9, 179. [Google Scholar] [CrossRef]
- Pandey, D.K.; Kaur, P.; Kumar, V.; Banik, R.M.; Malik, T.; Dey, A. Screening the elite chemotypes of Gloriosa superba L. in India for the production of anticancer colchicine: Simultaneous microwave-assisted extraction and HPTLC studies. BMC Plant Biol. 2021, 21, 77. [Google Scholar] [CrossRef]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green extraction of bioactive compounds from plant biomass and their application in meat as natural antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef]
| Plant Species | Solvent | Key Findings | Citation |
|---|---|---|---|
| Amaranthus hybridus | Methanol | The leaf extract (40.1 mg GAE/g DM) had a higher total phenolic content than the seed extract (31.20 mg GAE/g DM). | [33] |
| Anacardium occidentale | Methanol | The stem bark extract showed a high total phenolic content (660.52 mg GAE/g DM). | [33] |
| Calpurnia aurea | Methanol | Showed substantial phenolic compounds and were fast and effective scavengers of ABTS radicals, comparable to BHT. | [34] |
| Leonotis leonorus, Solanum nigrum | Acetone, methanol, and water | Methanol extracts had higher proanthocyanidin content. | [35] |
| Tetrapleura tetraptera, Parkia biglobosa | Methanol, ethanolic, and water | Methanolic extracts exhibited higher antioxidant capacity, which correlated with higher polyphenol content. | [36] |
| Psorospermum febrifugum, Myrianthus arboreus | Methanol, dichloromethane | Methanolic extraction of P. febrifugum yielded the highest amount (30.8%) and showed strong antioxidant activity, better than ascorbic acid. | [36] |
| Aspalathus linearis (Rooibos) | Methanol and water (fermented vs. unfermented) | Unfermented methanol extracts produced higher total phenolic content than fermented extracts. | [37] |
| Bergenia ciliata | Methanol | Showed the strongest antioxidant activity among the three plants tested, with an IC50 value close to L-ascorbic acid. | [38] |
| Mesembryanthemum edule L. | Methanol and Ethanol | Methanolic extraction was richer in total polyphenols. Increased sonication time enhanced polyphenol content. | [39] |
| Napoleona imperialis | Methanol | Inhibited the growth of 11 bacterial strains and demonstrated wound healing properties. | [43] |
| Cymbopogon nardus | Methanol | Had the highest total phenolic content and showed the best free radical scavenging activity amongst the investigated grasses. | [53] |
| Cylicondiscus gabunensis | Methanol | Showed the highest antioxidant activity, even higher than the standard catechin. | [54] |
| Plant Species | Extraction Method | Compounds Extracted | Properties | Reference |
|---|---|---|---|---|
| Adansonia digitata | MAE | Polyphenols, flavonoids | High polyphenolic content; improved antioxidant activity | [76] |
| Nymphaea lotus | UAE | Flavonoids | Increased flavonoid content; enhanced antioxidant potential | [77] |
| Dodonaea angustifolia | UAE | Phenolic acids, flavonoids | Significant antibacterial activity | [78] |
| Plectranthus madagascariensis | MAE | Caffeic acid, chlorogenic acid, rosmarinic acid | Potent antibacterial activity; significant antioxidant activity | [82] |
| Cochlospermum planchonii | UAE | Phenolics, flavonoids | High phenolic content; strong antioxidant activity | [79] |
| Gloriosa superba | MAE | Colchicine | High colchicine yield | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ncama, K.; Malele, J.; Govender, D.M.; Anumanthoo, T.; Moyo, M. Effectiveness of Common Extraction Solvents in Obtaining Antioxidant Compounds from African Medicinal Plants. Antioxidants 2025, 14, 1498. https://doi.org/10.3390/antiox14121498
Ncama K, Malele J, Govender DM, Anumanthoo T, Moyo M. Effectiveness of Common Extraction Solvents in Obtaining Antioxidant Compounds from African Medicinal Plants. Antioxidants. 2025; 14(12):1498. https://doi.org/10.3390/antiox14121498
Chicago/Turabian StyleNcama, Khayelihle, Joseph Malele, Dhiren Munsami Govender, Thagen Anumanthoo, and Mack Moyo. 2025. "Effectiveness of Common Extraction Solvents in Obtaining Antioxidant Compounds from African Medicinal Plants" Antioxidants 14, no. 12: 1498. https://doi.org/10.3390/antiox14121498
APA StyleNcama, K., Malele, J., Govender, D. M., Anumanthoo, T., & Moyo, M. (2025). Effectiveness of Common Extraction Solvents in Obtaining Antioxidant Compounds from African Medicinal Plants. Antioxidants, 14(12), 1498. https://doi.org/10.3390/antiox14121498

