Identification of Phenolic Compounds Present in Three Speedwell (Veronica L.) Species and Their Antioxidant Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Preparation, Extraction and Identification of Phenolic Compounds
2.2. Reagents and Standards
2.3. Chemical Characterization of Phenolic Compounds
2.4. Antioxidant Activity of Veronica Extracts
2.4.1. Measurement of the ORAC Values
2.4.2. Measurement of the DPPH Radical Scavenging Activity
2.4.3. Measurement of the ORAC and DPPH Capacity for Standards
2.5. Statistical Analyses
3. Results
3.1. LC-MS/MS Analysis of Phenolic Compounds Present in Veronica Species
3.2. Antioxidant Activity of Phenolic Compounds Present in Studied Veronica Species
3.2.1. ORAC Activity
3.2.2. DPPH Activity
3.3. Antioxidant Activity of the Standards of the Most Abundant Phenolic Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz, A.; Sánchez-Hernández, E.; Teixeira, A.; Martín-Ramos, P.; Cunha, A.; Oliveira, R. Antifungal and Antioomycete Activities of a Curcuma longa L. Hydroethanolic Extract Rich in Bisabolene Sesquiterpenoids. Horticulturae 2024, 10, 124. [Google Scholar] [CrossRef]
- Barreira, J.C.M.; Dias, M.I.; Živković, J.; Stojković, D.; Soković, M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic Profiling of Veronica spp. Grown in Mountain, Urban and Sandy Soil Environments. Food Chem. 2014, 163, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Dunkić, V.; Kosalec, I.; Kosir, I.; Potočnik, T.; Cerenak, A.; Koncic, M.; Vitali, D.; Muller, I.; Kopricanec, M.; Bezić, N.; et al. Antioxidant and Antimicrobial Properties of Veronica spicata L. (Plantaginaceae). Curr. Drug Targets 2015, 16, 1660–1670. [Google Scholar] [CrossRef]
- Albach, D.C.; Grayer, R.J.; Jensen, S.R.; Özgökce, F.; Veitch, N.C. Acylated Flavone Glycosides from Veronica. Phytochemistry 2003, 64, 1295–1301. [Google Scholar] [CrossRef]
- Ignjatović, Đ.; Živković, J.; Tovilović, G.; Šavikin, K.; Tomić, M.; Maksimović, Z.; Janković, T. Evaluation of Angiogenic and Neuroprotective Potential of Different Extracts from Three Veronica Species. Front. Life Sci. 2015, 8, 107–116. [Google Scholar] [CrossRef]
- Xue, H.; Chen, K.X.; Zhang, L.Q.; Li, Y.M. Review of the Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Veronica. Am. J. Chin. Med. 2019, 47, 1193–1221. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Shetty, M.S.; Anil Kumar, N.V.; Živković, J.; Calina, D.; Docea, A.O.; Emamzadeh-Yazdi, S.; Kılıç, C.S.; Goloshvili, T.; Nicola, S.; et al. Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology. Molecules 2019, 24, 2454. [Google Scholar] [CrossRef]
- Mocan, A.; Vodnar, D.C.; Vlase, L.; Crișan, O.; Gheldiu, A.M.; Crișan, G. Phytochemical Characterization of Veronica officinalis L., V. teucrium L. and V. orchidea Crantz from Romania and Their Antioxidant and Antimicrobial Properties. Int. J. Mol. Sci. 2015, 16, 21109–21127. [Google Scholar] [CrossRef]
- Kovaleva, A.; Osmachko, A.; Ilina, T.; Goryacha, O.; Omelyanchik, L.; Grytsyk, A.; Koshovyi, O. Chemical Composition of Essential Oils from Flowers of Veronica longifolia L., Veronica incana L. and Veronica spicata L. ScienceRise Pharm. Sci. 2022, 69–79. [Google Scholar] [CrossRef]
- Dunkić, V.; Nazlić, M.; Ruščić, M.; Vuko, E.; Akrap, K.; Topić, S.; Milović, M.; Vuletić, N.; Puizina, J.; Jurišić Grubešić, R.; et al. Hydrodistillation and Microwave Extraction of Volatile Compounds: Comparing Data for Twenty-One Veronica Species from Different Habitats. Plants 2022, 11, 902. [Google Scholar] [CrossRef]
- Nazlić, M.; Fredotović, Ž.; Vuko, E.; Fabijanić, L.; Kremer, D.; Stabentheiner, E.; Ruščić, M.; Dunkić, V. Wild Species Veronica officinalis L. and Veronica saturejoides Vis. ssp. saturejoides—Biological Potential of Free Volatiles. Horticulturae 2021, 7, 295. [Google Scholar] [CrossRef]
- Nazlić, M.; Fredotović, Ž.; Vuko, E.; Vuletić, N.; Ljubenkov, I.; Kremer, D.; Jurišić Grubešić, R.; Stabentheiner, E.; Randić, M.; Dunkić, V. Free Volatile Compounds of Veronica austriaca ssp. jacquinii (Baumg.) Eb. Fisch. and Their Biological Activity. Plants 2021, 10, 2529. [Google Scholar] [CrossRef] [PubMed]
- Ertas, A.; Boga, M.; Kizil, M.; Ceken, B.; Goren, A.C.; Hasimi, N.; Demirci, S.; Topcu, G.; Kolak, U. Chemical Profile and Biological Activities of Veronica thymoides subsp. pseudocinerea. Pharm. Biol. 2015, 53, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Saracoǧlu, I.; Harput-Hudaverdi, U.Ş.; Nagatsu, A.; Varel, M. Cytotoxic activity and structural aspects of iridoids isolated from Veronica thymoides subsp. pseudocinerea. In Proceedings of the Natural Products with Pharmaceutical, Nutraceutical, Cosmetic, and Agrochemical Interest, 7th Joint Meeting of AFERP, ASP, GA, and PSE (49th Annual Meeting of the American Society of Pharmacognosy), Athens, Greece, 3–8 August 2008; Planta Med: Athens, Greece, 2008; p. 1046. [Google Scholar]
- Taskova, R.M.; Kokubun, T.; Ryan, K.G.; Garnock-Jones, P.J.; Jensen, S.R. Phenylethanoid and Iridoid Glycosides in the New Zealand Snow Hebes (Veronica, Plantaginaceae). Chem. Pharm. Bull. 2010, 58, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, A.; Kintya, P.; Wyrzykiewicz, B.; Gorincioi, E. Steroidal Glycosides from Veronica chamaedrys L. Part I. The Structures of Chamaedrosides C, C1, C2, E, E1 and E2. Nat. Prod. Commun. 2012, 7, 565–568. [Google Scholar]
- Živković, J.; Barreira, J.C.M.; Stojković, D.; Ćebović, T.; Santos-Buelga, C.; Maksimović, Z.; Ferreira, I.C.F.R. Phenolic Profile, Antibacterial, Antimutagenic and Antitumour Evaluation of Veronica urticifolia Jacq. J. Funct. Foods 2014, 9, 192–201. [Google Scholar] [CrossRef]
- Kroll-Møller, P.; Pedersen, K.D.; Gousiadou, C.; Kokubun, T.; Albach, D.; Taskova, R.; Garnock-Jones, P.J.; Gotfredsen, C.H.; Jensen, S.R. Iridoid Glucosides in the Genus Veronica (Plantaginaceae) from New Zealand. Phytochemistry 2017, 140, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Harput, U.Ş.; Genç, Y.; Khan, N.; Saracoglu, I. Radical Scavenging Effects of Different Veronica Species. Rec. Nat. Prod. 2011, 5, 100–107. [Google Scholar]
- Küpeli, E.; Harput, U.Ş.; Varel, M.; Yesilada, E.; Saracoglu, I. Bioassay-guided isolation of iridoid glucosides with antinociceptive and anti-inflammatory activities from Veronica anagallis-aquatica L. J. Ethnopharmacol. 2005, 102, 170–176. [Google Scholar] [CrossRef]
- Tian, W.; Zhao, J.; Kim, M.; Tae, H.; Kim, I.; Ahn, D.; Hwang, H.P.; Mao, M.; Park, B. Veronica persica ameliorates acetaminophen-induced murine hepatotoxicity via attenuating oxidative stress and inflammation. Biomed. Pharmacother. 2023, 169, 115898. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J. Pharm. Bioallied Sci. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; dos Santos, T.C.; Coube, C.S.; Leitão, S.G. Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method. Phytother. Res. 2001, 15, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Payet, B.; Sing, A.S.C.; Smadja, J. Assessment of Antioxidant Activity of Cane Brown Sugars by ABTS and DPPH Radical Scavenging Assays: Determination of Their Polyphenolic and Volatile Constituents. J. Agric. Food Chem. 2005, 53, 10074–10079. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.-C.; Duh, P.-D. Scavenging Effect of Methanolic Extracts of Peanuts Hulls on Free-Radical and Active-Oxygen Species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Stojković, D.S.; Živković, J.; Soković, M.; Glamočlija, J.; Ferreira, I.C.F.R.; Janković, T.; Maksimović, Z. Antibacterial Activity of Veronica montana L. Extract and of Protocatechuic Acid Incorporated in a Food System. Food Chem. Toxicol. 2013, 55, 209–213. [Google Scholar] [CrossRef]
- Beara, I.; Živković, J.; Lesjak, M.; Ristić, J.; Šavikin, K.; Maksimović, Z.; Janković, T. Phenolic Profile and Anti-Inflammatory Activity of Three Veronica Species. Ind. Crops Prod. 2015, 63, 276–280. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sharifi-Rad, M.; Salehi, B.; Iriti, M.; Roointan, A.; Mnayer, D.; Soltani-Nejad, A.; Afshari, A. In Vitro and In Vivo Assessment of Free Radical Scavenging and Antioxidant Activities of Veronica persica Poir. Cell Mol. Biol. 2018, 64, 57–64. [Google Scholar] [CrossRef]
- Harput, U.S.; Saracoglu, I.; Genc, Y. Comparative Bioactivity Studies on Four Veronica Species. FABAD J. Pharm. Sci. 2009, 34, 67–72. [Google Scholar]
- Harput, U.S.; Saracoglu, I.; Inoue, M.; Ogihara, Y. Anti-Inflammatory and Cytotoxic Activities of Five Veronica Species. Biol. Pharm. Bull. 2002, 25, 483–486. [Google Scholar] [CrossRef]
- Nikolova, M. Screening of Radical Scavenging Activity and Polyphenol Content of Bulgarian Plant Species. Pharmacogn. Res. 2011, 3, 256. [Google Scholar] [CrossRef] [PubMed]
- Ninfali, P.; Mea, G.; Giorgini, S.; Rocchi, M.; Bacchiocca, M. Antioxidant Capacity of Vegetables, Spices and Dressings Relevant to Nutrition. Br. J. Nutr. 2005, 93, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, S.Y. Antioxidant Activity and Phenolic Compounds in Selected Herbs. J. Agric. Food Chem. 2001, 49, 5165–5170. [Google Scholar] [CrossRef]
- Wojcikowski, K.; Stevenson, L.; Leach, D.; Wohlmuth, H.; Gobe, G. Antioxidant Capacity of 55 Medicinal Herbs Traditionally Used to Treat the Urinary System: A Comparison Using a Sequential Three-Solvent Extraction Process. J. Altern. Complement. Med. 2007, 13, 103–109. [Google Scholar] [CrossRef] [PubMed]
Taxa | Locality | Latitude | Longitude | Altitude a.s.l. (m) | Voucher No. |
---|---|---|---|---|---|
V. anagallis-aquatica L. | Split | 43°31′43.5″ N | 16°28′45.2″ E | 22 | CROVeS-06-2021 |
V. persica Poir. | Hvar | 43°09′42.8″ N | 16°40′37.6″ E | 18 | CROVeS-22-2021 |
V. polita Fr. | Hvar | 43°10′42.3″ N | 16°36′43.6″ E | 38 | CROVeS-23-2021 |
Compound | Precursor m/z | Fragment m/z | tr (min) |
---|---|---|---|
p-hydroxybenzoic acid | 137.02 | 93.03 | 3.48 |
Protocatechuic acid | 153.02 | 109.03 | 2.21 |
Gentisic acid | 153.02 | 109.03 | 3.21 |
Vanillic acid | 167.03 | 152.01 | 4.66 |
Gallic acid | 169.01 | 125.02 | 1.33 |
Syringic acid | 197.04 | 123.01 | 5.59 |
p-coumaric acid | 163.04 | 119.05 | 7.18 |
o-coumaric acid | 163.04 | 119.05 | 9.16 |
Caffeic acid | 179.03 | 135.04 | 4.9 |
Ferulic acid | 193.05 | 134.03 | 8.19 |
Chlorogenic acid | 353.08 | 179.03 | 4.64 |
Quinic acid | 191.05 | 85.03 | 4.64 |
Sinapic acid | 223.06 | 193.01 | 8.49 |
Rosmarinic acid | 359.08 | 161.02 | 9.88 |
Cinnamic acid | 147.05 | 103.06 | 11.17 |
Epicatechin | 289.07 | 109.03 | 6.25 |
Catechin | 289.07 | 109.03 | 4.17 |
Resveratrol | 227.07 | 143.05 | 10.42 |
Astringin | 405.12 | 243.06 | 7.50 |
EGCG (Epigallocatechin gallate) | 457.08 | 169.01 | 6.95 |
Hesperetin | 301.07 | 164.01 | 12.61 |
Quercetin | 301.03 | 151.00 | 11.36 |
Myricetin | 317.03 | 151.00 | 10.03 |
Apigenin | 269.04 | 117.03 | 12.46 |
Naringenin | 271.06 | 151.00 | 12.14 |
Rutin | 609.15 | 300.03 | 8.86 |
Extracts | V. anagallis-aquatica | V. persica | V. polita |
---|---|---|---|
Extraction yield (%) | |||
MetOH extract | 26.00 ± 2.83 a,d | 18.25 ± 3.18 b,d | 11.50 ± 2.12 c,d |
80% EtOH extract | 32.00 ± 1.41 a,d | 18.00 ± 0.00 b,d | 14..00 ± 2.83 b,d |
Water extract | 8.00 ± 1.41 a,e | 10.25 ± 1.77 a,e | 15.50 ± 2.12 b,a,d |
V. anagallis-aquatica | V. persica | V. polita | |||||||
---|---|---|---|---|---|---|---|---|---|
Compound | MetOH Extract | 80% EtOH Extract | Water Extract | MetOH Extract | 80% EtOH Extract | Water Extract | MetOH Extract | 80% EtOH Extract | Water Extract |
(µg/g of DW) | |||||||||
p-hydroxybenzoic acid | 4.11 ± 0.02 a,d | 5.04 ± 0.36 b,d | 5.70 ± 0.11 c,d | 0.61 ± 0.01 a,e | 2.91 ± 0.16 b,e | 1.41 ± 0.07 c,e | 0.66 ± 0.02 a,f | 0.54 ± 0.02 b,f | 0.28 ± 0.02 c,f |
Protocatechuic acid | 3.44 ± 0.07 a,d | 3.81 ± 0.13 b,d | 4.84 ± 0.05 c,d | 1.01 ± 0.02 a,e | 4.79 ± 0.37 b,e | 3.82 ± 0.14 c,e | 0.08 ± 0.01 a,f | 0.24 ± 0.004 b,f | 0.24 ± 0.01 b,f |
Gentisic acid | 3.41 ± 0.01 a,d | 3.84 ± 0.20 b,d | 4.98 ± 0.07 c,d | 1.01 ± 0.01 a,e | 4.89 ± 0.24 b,e | 3.90 ± 0.05 c,e | 0.11 ± 0.00 a,f | 0.27 ± 0.01 b,f | 0.28 ± 0.01 b,f |
Vanillic acid | 2.73 ± 0.19 a,d | 2.99 ± 0.18 a,d | 3.45 ± 0.35 b,d | 0.79 ± 0.03 a,e | 1.98 ± 0.15 b,e | 0.76 ± 0.04 a,e | 4.24 ± 0.49 a,f | 0.36 ± 0.04 b,f | 4.97 ± 0.12 c,f |
Gallic acid | n.d. a,d | 0.38 ± 0.01 a,d | n.d. a | n.d. a,d | 1.11 ± 0.08 b,e | n.d. a | n.d. a,d | 0.18 ± 0.002 b,f | n.d. a |
Syringic acid | n.d. a,d | n.d. a | 0.11 ± 0.01 a,d | 0.26 ± 0.00 a,e | n.d. b | 0.17 ± 0.00 c,e | 0.18 ± 0.00 a,f | n.d. b | 0.37 ± 0.00 c,f |
p-coumaric acid | 1.03 ± 0.04 a,d | 1.25 ± 0.01 a,d | 0.53 ± 0.02 b,d | 0.22 ± 0.00 a,e | 0.64 ± 0.02 b,e | 0.33 ± 0.01 c,e | 0.81 ± 0.02 a,f | 1.69 ± 0.08 b,f | 0.08 ± 0.00 c,f |
o-coumaric acid | n.d. | n.d. d | n.d. | n.d. a | n.d. d | n.d. | n.d. a | 0.09 ± 0.001 b,e | n.d. a |
Caffeic acid | 7.15 ± 0.20 a,d | 7.45 ± 0.06 a,d | 1.94 ± 0.07 a,d | 0.32 ± 0.01 a,e | 3.88 ± 0.04 b,e | 1.42 ± 0.05 c,e | 0.08 ± 0.00 a,f | 1.24 ± 0.04 b,f | 0.05 ± 0.00 a,f |
Ferulic acid | 0.50 ± 0.02 a,d | 0.54 ± 0.02 a,d | 0.18 ± 0.001 b,d | 0.35 ± 0.03 a,e | 0.30 ± 0.01 a,e | 0.78 ± 0.02 b,e | 0.56 ± 0.02 a,d | 0.14. ± 0.00 b,f | 0.13 ± 0.00 b,f |
Chlorogenic acid | 0.65 ± 0.03 a,d | 2.96 ± 0.01 b,d | 0.16 ± 0.001 c,d | 1.60 ± 0.01 a,e | 0.26 ± 0.01 b,e | 1.06 ± 0.02 c,e | 0.17 ± 0.00 a,f | 0.40 ± 0.01 b,f | 0.20 ± 0.00 c,f |
Quinic acid | n.d. d | n.d. | n.d. | 1.54 ± 0.13 a,e | n.d. b | n.d. b | n.d. d | n.d. | n.d. |
Sinapic acid | n.d. | n.d. | n.d. d | n.d. | n.d. | n.d. d | n.d. a | n.d. a | 0.56 ± 0.06 b,e |
Rosmarinic acid | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Cinnamic acid | n.d. | n.d. | n.d. d | n.d. | n.d. | n.d. d | n.d. a | n.d. a | 0.59 ± 0.02 b,e |
Epicatechin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Catechin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Resveratrol | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Astringin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
EGCG (Epigallocatechin gallate) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Hesperetin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Quercetin | 2.15 ± 0.07 a,d | 3.24 ± 0.22 b,d | n.d. a,d | n.d. a,e | 2.21 ± 0.13 b,e | 4.22 ± 0.55 c,e | n.d. a,e | 1.16 ± 0.02 b,f | n.d. a,d |
Myricetin | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Apigenin | 339.65 ± 25.94 a,d | 950.4 ± 22.4 b,d | 103.73 ± 4.16 c,d | 76.56 ± 3.23 a,e | 661.8 ± 25.51 b,e | 27.18 ± 1.28 c,e | 5.31 ± 0.13 a,f | 48.53 ± 1.75 b,f | n.d. c,f |
Naringenin | 0.33 ± 0.00 a,d | 0.64 ± 0.03 b,d | 0.19 ± 0.00 c,d | 0.23 ± 0.001 a,e | 0.56 ± 0.02 b,e | 0.11 ± 0.001 c,e | 0.17 ± 0.001 a,f | 0.22 ± 0.01 b,f | 0.21 ± 0.01 b,f |
Rutin | 5.47 ± 0.63 a,d | 3.52 ± 0.17 b,d | 0.31 ± 0.03 c,d | 2.33 ± 0.23 e | 1.04 ± 0.07 a,e | 0.57 ± 0.01 b,e | n.d. a,c,f | 0.59 ± 0.03 b,f | n.d. a,f |
Extract/Species | V. anagallis-aquatica | V. persica | V. polita |
---|---|---|---|
Methanolic | 2678.40 ± 86.88 Ab | 2169.58 ± 131.00 Bc | 4505.60 ± 255.34 Aa |
Ethanolic 80% | 2652.49 ± 366.17 Ab | 3065.59 ± 268.73 Aa | 1290.96 ± 188.07 Cc |
Water | 1339.84 ± 126.23 Bb | 1561.02 ± 28.01 Cb | 1810.31 ± 37.53 Ba |
Extract/Species | V. anagallis-aquatica | V. persica | V. polita | |
---|---|---|---|---|
IC50 | Methanolic | 120.19 ± 3.98 Aa | 180.57 ± 25.34 Ba | 145.76 ± 24.02 Aa |
Ethanolic 80% | 126.72 ± 17.27 Aa | 120.65 ± 10.90 Aa | 474.01 ± 1.45 Cb | |
Water | 198.99 ± 14.62 Ba | 228.95 ± 16.32 Ca | 257.17 ± 19.26 Ba | |
Trolox Equivalents | Methanolic | 271.45 ± 13.53 Aa | 170.67 ± ±24.01 Ba | 178.38 ± 2.83 Aa |
Ethanolic 80% | 254.67 ± 39.70 Aa | 268.33 ± 25.69 Aa | 85.33 ± 12.86 Bb | |
Water | 160.50 ± 6.36 Ba | 146.33 ± 12.70 Ba | 140.22 ± 16.82 Aa |
Standard/Method | ORAC | DPPH |
---|---|---|
Apigenin | 438.90 ± 46.52 c | 17.91 ± 3.87 a |
p-hydroxybenzoic acid | 32,519.03 ± 3568.44 a | 3.79 ± 0.44 a |
Caffeic acid | 33,057.22 ± 3312.59 a | 1.99 ± 0.10 a |
Vanillic acid | 28,072.31 ± 1815.50 b | 2.92 ± 0.47 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrca, I.; Orhanović, S.; Pezelj, I.; Sušić, K.; Dunkić, V.; Kremer, D.; Nazlić, M. Identification of Phenolic Compounds Present in Three Speedwell (Veronica L.) Species and Their Antioxidant Potential. Antioxidants 2024, 13, 738. https://doi.org/10.3390/antiox13060738
Vrca I, Orhanović S, Pezelj I, Sušić K, Dunkić V, Kremer D, Nazlić M. Identification of Phenolic Compounds Present in Three Speedwell (Veronica L.) Species and Their Antioxidant Potential. Antioxidants. 2024; 13(6):738. https://doi.org/10.3390/antiox13060738
Chicago/Turabian StyleVrca, Ivana, Stjepan Orhanović, Ivana Pezelj, Karolina Sušić, Valerija Dunkić, Dario Kremer, and Marija Nazlić. 2024. "Identification of Phenolic Compounds Present in Three Speedwell (Veronica L.) Species and Their Antioxidant Potential" Antioxidants 13, no. 6: 738. https://doi.org/10.3390/antiox13060738
APA StyleVrca, I., Orhanović, S., Pezelj, I., Sušić, K., Dunkić, V., Kremer, D., & Nazlić, M. (2024). Identification of Phenolic Compounds Present in Three Speedwell (Veronica L.) Species and Their Antioxidant Potential. Antioxidants, 13(6), 738. https://doi.org/10.3390/antiox13060738