Supplementation with Complex Dietary Fiber during Late Pregnancy and Lactation Can Improve Progeny Growth Performance by Regulating Maternal Antioxidant Status and Milk Quality
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals, Diets, and Management
2.2. Sample and Data Collection
2.3. Milk Composition
2.4. Determination of Antioxidant Capacity in Serum and Milk of Sows and Piglets
2.5. Measurement of Immunity, Inflammation, and Intestinal Permeability Indices in Sows and Piglets
2.6. Measurement of Immune and Inflammatory Indices in Colostrum and Milk
2.7. Piglet Serum Reproduction and Sow Serum Feeding-Related Hormones
2.8. Fecal Short-Chain Fatty Acids and Water Content Analysis
2.9. DNA Extraction, PCR, and Library Construction and Sequencing
2.10. Statistical Analysis
3. Results
3.1. Animal Performance
3.2. Fecal Water Content and Serum Feeding-Related Hormones
3.3. Immunization, Intestinal Permeability, and Inflammation in Sows
3.4. Composition, Immunity, and Inflammation of Colostrum and Milk
3.5. Immunity, Inflammation, Reproduction, Intestinal Permeability in Piglets
3.6. SCFA of Sows and Piglets
3.7. Fecal Microbiota of Sows
3.8. Correlation between the Immune Level of Sows and Piglet Growth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, T.X.; Yao, W.L.; Xia, J.; Li, J.; Shao, Y.F.; Huang, F.R. Dietary supplementation with garcinol during late gestation and lactation facilitates acid-base balance and improves the performance of sows and newborn piglets. J. Anim. Sci. 2019, 97, 4557–4566. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.K.; Zhang, X.Y.; Wu, Y.J.; Che, D.S.; Ye, H.; Pi, Y.; Tao, S.Y.; Wang, J.J.; Han, D.D. Maternal Amino Acid Mixtures Supplementation during Late Gestation and Lactation Improved Growth Performance of Piglets through Improving Colostrum Composition and Antioxidant Capacity. Antioxidants 2022, 11, 2144. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.H.; Yang, S.W.; Chen, F.; Guan, W.T.; Zhang, S.A. Nutritional strategies to alleviate oxidative stress in sows. Anim. Nutr. 2022, 9, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, C. From oxidative stress to inflammation: Redox balance and immune system. Poult. Sci. 2019, 98, 4240–4246. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, C.; Schönherz, A.A.; Hojsgaard, S. Effect of Maternal Dietary Redox Levels on Antioxidative Status and Immunity of the Suckling Off-Spring. Antioxidants 2021, 10, 478. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.H.; Liu, H.S.; Liu, S.J.; He, T.F.; Piao, X.S. Effects of dietary fiber sources during late gestation and lactation on sow performance, milk quality, and intestinal health in piglets. J. Anim. Sci. 2019, 97, 4922–4933. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Rodríguez-Lara, A.; Plaza-Díaz, J.; López-Uriarte, P.; Vázquez-Aguilar, A.; Reyes-Castillo, Z.; Alvarez-Mercado, A.I. Fiber Consumption Mediates Differences in Several Gut Microbes in a Subpopulation of Young Mexican Adults. Nutrients 2022, 14, 1214. [Google Scholar] [CrossRef]
- Le, J.M.; Zhang, X.Y.; Jia, W.P.; Zhang, Y.; Luo, J.T.; Sun, Y.N.; Ye, J.P. Regulation of microbiota-GLP1 axis by sennoside A in diet-induced obese mice. Acta Pharm. Sin. B 2019, 9, 758–768. [Google Scholar] [CrossRef]
- Pouille, C.L.; Ouaza, S.; Roels, E.; Behra, J.; Tourret, M.; Molinié, R.; Fontaine, J.X.; Mathiron, D.; Gagneul, D.; Taminiau, B.; et al. Chicory: Understanding the Effects and Effectors of This Functional Food. Nutrients 2022, 14, 957. [Google Scholar] [CrossRef]
- Ma, J.Y.; Wang, J.; Jin, X.Y.; Liu, S.J.; Tang, S.F.; Zhang, Z.H.; Long, S.F.; Piao, X.S. Effect of Dietary Supplemented with Mulberry Leaf Powder on Growth Performance, Serum Metabolites, Antioxidant Property and Intestinal Health of Weaned Piglets. Antioxidants 2023, 12, 307. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Fouhse, J.M.; Tiwari, U.P.; Li, L.G.; Willing, B.P. Dietary Fiber and Intestinal Health of Monogastric Animals. Front. Vet. Sci. 2019, 6, 48. [Google Scholar] [CrossRef] [PubMed]
- Mironczuk-Chodakowska, I.; Witkowska, A.M. Evaluation of Polish Wild Mushrooms as Beta-Glucan Sources. Int. J. Environ. Res. Public Health 2020, 17, 7299. [Google Scholar] [CrossRef] [PubMed]
- Dowley, A.; Sweeney, T.; Conway, E.; Vigors, S.; Ryan Marion, T.; Yadav, S.; Wilson, J.; O’Doherty, J.V. The effects of dietary supplementation with mushroom or selenium enriched mushroom powders on the growth performance and intestinal health of post-weaned pigs. J. Anim. Sci. Biotechnol. 2023, 14, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Z.J.; Lyu, H.W.; Gu, X.L.; Song, Z.H.; He, X.; Fan, Z.Y. Effects of dietary inulin during late gestation on sow physiology, farrowing duration and piglet performance. Anim. Reprod. Sci. 2020, 219, 106531. [Google Scholar] [CrossRef]
- Tan, C.Q.; Wei, H.K.; Ao, J.T.; Long, G.; Peng, J. Inclusion of Konjac Flour in the Gestation Diet Changes the Gut Microbiota, Alleviates Oxidative Stress, and Improves Insulin Sensitivity in Sows. Appl. Environ. Microbiol. 2016, 82, 5899–5909. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, X.H.; Zheng, J.; Li, M.; Yu, M.; Ping, F.; Wang, Z.X.; Qi, C.J.; Wang, T.; Wang, X.J. Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring. Exp. Biol. Med. 2017, 242, 1444–1452. [Google Scholar] [CrossRef]
- Sulabo, R.C.; Jacela, J.Y.; Tokach, M.D.; Dritz, S.S.; Goodband, R.D.; DeRouchey, J.M.; Nelssen, J.L. Effects of lactation feed intake and creep feeding on sow and piglet performance. J. Anim. Sci. 2010, 88, 3145–3153. [Google Scholar] [CrossRef]
- Li, S.; Zheng, J.; He, J.Q.; Liu, H.; Huang, Y.Y.; Huang, L.S.; Wang, K.; Zhao, X.L.; Feng, B.; Che, L.Q.; et al. Dietary fiber during gestation improves lactational feed intake of sows by modulating gut microbiota. J. Anim. Sci. Biotechnol. 2023, 14, 65. [Google Scholar] [CrossRef]
- Shang, Q.H.; Liu, S.J.; Liu, H.S.; Mahfuz, S.; Piao, X.S. Maternal supplementation with a combination of wheat bran and sugar beet pulp during late gestation and lactation improves growth and intestinal functions in piglets. Food Funct. 2021, 12, 7329–7342. [Google Scholar] [CrossRef]
- Palou, M.; Sánchez, J.; García-Carrizo, F.; Palou, A.; Picó, C. Pectin supplementation in rats mitigates age-related impairment in insulin and leptin sensitivity independently of reducing food intake. Mol. Nutr. Food Res. 2015, 59, 2022–2033. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wei, S.Y.; Xu, B.C.; Hao, L.H.; Su, W.F.; Jin, M.L.; Wang, Y.Z. Bacillus subtilis and Enterococcus faecium co-fermented feed regulates lactating sow’s performance, immune status and gut microbiota. Microb. Biotechnol. 2021, 14, 614–627. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Xiong, S.T.; Li, Z.; Wu, J.J.; Zhou, L.; Gui, J.F.; Mei, J. A feedback regulatory loop involving p53/miR-200 and growth hormone endocrine axis controls embryo size of zebrafish. Sci. Rep. 2015, 5, 15906. [Google Scholar] [CrossRef] [PubMed]
- Setia, S.; Sridhar, M.G. Changes in GH/IGF-1 Axis in Intrauterine Growth Retardation: Consequences of Fetal Programming? Horm. Metab. Res. 2009, 41, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Jiang, G.T.; Kebreab, E.; Yu, Q.F.; Li, J.H.; Zhang, X.; He, H.; Fang, R.J.; Dai, Q.Z. Effects of dietary grape seed polyphenols supplementation during late gestation and lactation on antioxidant status in serum and immunoglobulin content in colostrum of multiparous sows. J. Anim. Sci. 2019, 97, 2515–2523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Y.; Yuan, Z.Y.; Wu, H.Y.; Li, W.Q.; Li, L.; Huang, H.Y. Network Pharmacology-Based Strategy Reveals the Effects of Hedysarum multijugum Maxim.-Radix Salviae Compound on Oxidative Capacity and Cardiomyocyte Apoptosis in Rats with Diabetic Cardiomyopathy. Biomed Res. Int. 2020, 2020, 8260703. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Zhou, P.; Liu, H.; Li, S.; Zhao, Y.; Deng, K.; Cao, D.D.; Che, L.Q.; Fang, Z.F.; Xu, S.Y.; et al. Effects of Inulin Supplementation in Low- or High-Fat Diets on Reproductive Performance of Sows and Antioxidant Defence Capacity in Sows and Offspring. Reprod. Domest. Anim. 2016, 51, 492–500. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Ishida, Y.; Hosomichi, J.; Suzuki, J.; Usumi-Fujita, R.; Shimizu, Y.; Kaneko, S.; Ono, T. A new approach to transfect NF-κB decoy oligodeoxynucleotides into the periodontal tissue using the ultrasound-microbubble method. Int. J. Oral Sci. 2017, 9, 80–86. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Zhang, Y.; He, W.T.; Wei, Y.H.; Han, S.S.; Xia, L.; Tan, B.; Yu, J.; Kang, H.Y.; Ma, M.E.; et al. Effects of Small Peptide Supplementation on Growth Performance, Intestinal Barrier of Laying Hens During the Brooding and Growing Periods. Front. Immunol. 2022, 13, 925256. [Google Scholar] [CrossRef]
- Sun, C.S.; Song, R.; Zhou, J.Y.; Jia, Y.B.; Lu, J.J. Fermented Bamboo Fiber Improves Productive Performance by Regulating Gut Microbiota and Inhibiting Chronic Inflammation of Sows and Piglets during Late Gestation and Lactation. Microbiol. Spectr. 2023, 11, e0408422. [Google Scholar] [CrossRef]
- Maciag, S.S.; Bellaver, F.V.; Bombassaro, G.; Haach, V.; Morés, M.A.Z.; Baron, L.F.; Coldebella, A.; Bastos, A.P. On the influence of the source of porcine colostrum in the development of early immune ontogeny in piglets. Sci. Rep. 2022, 12, 15630. [Google Scholar] [CrossRef] [PubMed]
- Martorell, P.; Alvarez, B.; Llopis, S.; Navarro, V.; Ortiz, P.; Gonzalez, N.; Balaguer, F.; Rojas, A.; Chenoll, E.; Ramón, D.; et al. Heat-Treated Bifidobacterium longum CECT-7347: A Whole-Cell Postbiotic with Antioxidant, Anti-Inflammatory, and Gut-Barrier Protection Properties. Antioxidants 2021, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Dirajlal-Fargo, S.; El-Kamari, V.; Weiner, L.; Shan, L.P.; Sattar, A.; Kulkarni, M.; Funderburg, N.; Nazzinda, R.; Karungi, C.; Kityo, C.; et al. Altered Intestinal Permeability and Fungal Translocation in Ugandan Children with Human Immunodeficiency Virus. Clin. Infect. Dis. 2020, 70, 2413–2422. [Google Scholar] [CrossRef] [PubMed]
- Chleilat, F.; Klancic, T.; Ma, K.; Schick, A.; Nettleton, J.E.; Reimer, R.A. Human Milk Oligosaccharide Supplementation Affects Intestinal Barrier Function and Microbial Composition in the Gastrointestinal Tract of Young Sprague Dawley Rats. Nutrients 2020, 12, 1532. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, Y.F.; You, J.M.; Song, H.Q.; Zhang, Y.Z.; Lv, Y.T.; Qiao, H.Z.; Tian, M.; Chen, F.; Zhang, S.H.; et al. The Effects of Dietary Supplementation of Saccharomyces cerevisiae Fermentation Product During Late Pregnancy and Lactation on Sow Productivity, Colostrum and Milk Composition, and Antioxidant Status of Sows in a Subtropical Climate. Front. Vet. Sci. 2020, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, F.T.; Guan, W.T.; Song, H.Q.; Tian, M.; Cheng, L.; Shi, K.; Song, J.S.; Chen, F.; Zhang, S.H.; et al. Increasing selenium supply for heat-stressed or actively cooled sows improves piglet preweaning survival, colostrum and milk composition, as well as maternal selenium, antioxidant status and immunoglobulin transfer. J. Trace Elem. Med. Biol. 2019, 52, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tian, M.; Guan, W.T.; Wen, T.; Yang, F.; Chen, F.; Zhang, S.H.; Song, J.J.; Ren, C.X.; Zhang, Y.Z.; et al. Increasing selenium supplementation to a moderately-reduced energy and protein diet improves antioxidant status and meat quality without affecting growth performance in finishing pigs. J. Trace Elem. Med. Biol. 2019, 56, 38–45. [Google Scholar] [CrossRef]
- Tian, M.; Chen, J.M.; Liu, J.X.; Chen, F.; Guan, W.T.; Zhang, S.H. Dietary fiber and microbiota interaction regulates sow metabolism and reproductive performance. Anim. Nutr. 2020, 6, 397–403. [Google Scholar] [CrossRef]
- Yao, W.; Li, J.; Wang, J.J.; Zhou, W.L.; Wang, Q.B.; Zhu, R.C.; Wang, F.L.; Thacker, P. Effects of dietary ratio of n-6 to n-3 polyunsaturated fatty acids on immunoglobulins, cytokines, fatty acid composition, and performance of lactating sows and suckling piglets. J. Anim. Sci. Biotechnol. 2012, 3, 43. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.Y.; Zhang, L.J.; Yang, Y.; Lin, Y.; Zhuo, Y.; Fang, Z.F.; Che, L.Q.; Feng, B.; Xu, S.Y.; et al. Maternal Dietary Fiber Composition during Gestation Induces Changes in Offspring Antioxidative Capacity, Inflammatory Response, and Gut Microbiota in a Sow Model. Int. J. Mol. Sci. 2020, 21, 31. [Google Scholar] [CrossRef]
- Li, Q.Y.; Burrough, E.R.; Gabler, N.K.; Loving, C.L.; Sahin, O.; Gould, S.A.; Patience, J.F. A soluble and highly fermentable dietary fiber with carbohydrases improved gut barrier integrity markers and growth performance in F18 ETEC challenged pigs. J. Anim. Sci. 2019, 97, 2139–2153. [Google Scholar] [CrossRef] [PubMed]
- Mach, N.; Fuster-Botella, D. Endurance exercise and gut microbiota: A review. J. Sport Health Sci. 2017, 6, 179–197. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.K.; Chen, J.; Pirzado, S.A.; Haile, T.H.; Cai, H.Y.; Liu, G.H. The effect of fermented and raw rapeseed meal on the growth performance, immune status and intestinal morphology of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2022, 106, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006, 124, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Chen, H.N.; Feng, L.P.; Zhang, J. Interactions between gut microbiota and metabolites modulate cytokine network imbalances in women with unexplained miscarriage. Npj Biofilms Microbiomes 2021, 7, 24. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Y.; Wen, Z.S.; Jiang, X.M.; Ma, X.; Han, X.Y. Weaning Stress Perturbs Gut Microbiome and Its Metabolic Profile in Piglets. Sci. Rep. 2018, 8, 18068. [Google Scholar] [CrossRef]
- Chen, Y.R.; Zheng, H.M.; Zhang, G.X.; Chen, F.L.; Chen, L.D.; Yang, Z.C. High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Sci. Rep. 2020, 10, 9364. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, L.; Chin, Y.X.; Liu, F.; Li, R.W.; Yuan, S.H.; Xue, C.H.; Xu, J.; Tang, Q.J. Astaxanthin n-Octanoic Acid Diester Ameliorates Insulin Resistance and Modulates Gut Microbiota in High-Fat and High-Sucrose Diet-Fed Mice. Int. J. Mol. Sci. 2020, 21, 2149. [Google Scholar] [CrossRef]
- Shang, J.Y.; Guo, H.; Li, J.; Li, Z.Y.; Yan, Z.P.; Wei, L.F.; Hua, Y.Z.; Lin, L.; Tian, Y.Z. Exploring the mechanism of action of Sanzi formula in intervening colorectal adenoma by targeting intestinal flora and intestinal metabolism. Front. Microbiol. 2022, 13, 1001372. [Google Scholar] [CrossRef]
- Klaassen, M.A.Y.; Imhann, F.; Collij, V.; Fu, J.; Wijmenga, C.; Zhernakova, A.; Dijkstra, G.; Festen, E.A.M.; Gacesa, R.; Vich Vila, A.; et al. Anti-inflammatory Gut Microbial Pathways Are Decreased during Crohn’s Disease Exacerbations. J. Crohns Colitis 2019, 13, 1439–1449. [Google Scholar] [CrossRef]
- Duan, J.J.; Yin, B.M.; Li, W.; Chai, T.J.; Liang, W.W.; Huang, Y.; Tan, X.M.; Zheng, P.; Wu, J.; Li, Y.F.; et al. Age-related changes in microbial composition and function in cynomolgus macaques. Aging-Us 2019, 11, 12080–12096. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Zhang, Y.; Xiao, K.P.; Jiang, F.; Wang, H.C.; Tang, D.Z.; Liu, D.; Liu, B.; Liu, Y.S.; He, X.; et al. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome 2018, 6, 211. [Google Scholar] [CrossRef] [PubMed]
Item | CON 1 | CDF 1 | SEM 2 | p-Value |
---|---|---|---|---|
ADFI, kg/d | 5.39 | 6.23 | 0.28 | 0.007 |
Backfat thickness, mm | ||||
Initial backfat thickness | 18.11 | 18.83 | 0.95 | 0.470 |
Weaning backfat thickness | 16.20 | 17.18 | 0.91 | 0.307 |
Backfat thickness change | 1.92 | 1.65 | 0.28 | 0.368 |
Litter weight, kg | ||||
Cross-fostering litter weight | 20.15 | 20.10 | 1.40 | 0.971 |
Weaning litter weight | 89.91 | 100.20 | 6.16 | 0.111 |
Litter weight gain | 69.75 | 80.10 | 5.58 | 0.079 |
Mean body weight, kg | ||||
Cross-fostering BW | 1.37 | 0.33 | 0.08 | 0.635 |
Weaning BW | 6.11 | 6.63 | 0.24 | 0.042 |
Average daily gain | 0.20 | 0.22 | 0.01 | 0.028 |
Litter size | ||||
Born alive | 14.80 | 14.67 | 0.87 | 0.881 |
Weaning litter size | 11.00 | 12.45 | 0.84 | 0.112 |
Weaning survival rate, % | 0.76 | 0.86 | 0.08 | 0.234 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wei, X.; Feng, Y.; Liu, H.; Tang, J.; Gao, F.; Shi, B. Supplementation with Complex Dietary Fiber during Late Pregnancy and Lactation Can Improve Progeny Growth Performance by Regulating Maternal Antioxidant Status and Milk Quality. Antioxidants 2024, 13, 22. https://doi.org/10.3390/antiox13010022
Liu X, Wei X, Feng Y, Liu H, Tang J, Gao F, Shi B. Supplementation with Complex Dietary Fiber during Late Pregnancy and Lactation Can Improve Progeny Growth Performance by Regulating Maternal Antioxidant Status and Milk Quality. Antioxidants. 2024; 13(1):22. https://doi.org/10.3390/antiox13010022
Chicago/Turabian StyleLiu, Xinyu, Xinke Wei, Ye Feng, Huawei Liu, Jiaqi Tang, Feng Gao, and Baoming Shi. 2024. "Supplementation with Complex Dietary Fiber during Late Pregnancy and Lactation Can Improve Progeny Growth Performance by Regulating Maternal Antioxidant Status and Milk Quality" Antioxidants 13, no. 1: 22. https://doi.org/10.3390/antiox13010022
APA StyleLiu, X., Wei, X., Feng, Y., Liu, H., Tang, J., Gao, F., & Shi, B. (2024). Supplementation with Complex Dietary Fiber during Late Pregnancy and Lactation Can Improve Progeny Growth Performance by Regulating Maternal Antioxidant Status and Milk Quality. Antioxidants, 13(1), 22. https://doi.org/10.3390/antiox13010022