Unconscious Cueing via the Superior Colliculi: Evidence from Searching for Onset and Color Targets
Abstract
:1. Introduction
Overview of the Experiments
2. Experimental Section
2.1. Experiment 1
2.1.1. Participants
2.1.2. Stimuli and Procedure
2.1.3. Results
2.1.4. Subliminal Cueing Task
2.1.5. Visibility of Subliminal Cues and Its Correlation with the Cueing Effects
2.1.6. Discussion
2.2. Experiment 2
2.2.1. Participants
2.2.2. Stimuli and Procedure
2.2.3. Results
2.2.4. Subliminal Cueing Task
2.2.5. Visibility of Subliminal Cues and Its Correlation with the Cueing Effects
2.2.6. Discussion
2.3. Experiment 3
2.3.1. Participants
2.3.2. Stimuli and Procedure
2.3.3. Results
2.3.4. Subliminal Cueing Task
2.3.5. Visibility of Subliminal Cues and Its Correlation with the Cueing Effects
2.3.6. Discussion
2.4. Experiment 4
2.4.1. Participants
2.4.2. Stimuli and Procedure
2.4.3. Results
2.4.4. Subliminal Cueing Task
2.4.5. Visibility of Subliminal Cues and Its Correlation with the Cueing Effects
2.4.6. Discussion
2.5. Experiment 5
2.5.1. Participants
2.5.2. Stimuli and Procedure
2.5.3. Results
2.5.4. Subliminal Cueing Task
2.5.5. Visibility of Subliminal Cues and Its Correlation with the Cueing Effects
2.5.6. Discussion
2.6. Experiment 6
2.6.1. Participants
2.6.2. Stimuli and Procedure
2.6.3. Results
2.6.4. Subliminal Cueing Task
2.6.5. Visibility of Subliminal Cues and Its Correlation with the Cueing Effects
2.6.6. Discussion
3. General Discussion
4. Conclusions
Acknowledgments
References
- Egeth, H.E.; Yantis, S. Visual attention: Control, representation, and time course. Annu. Rev. Psychol. 1997, 48, 269–297. [Google Scholar] [CrossRef]
- Lamme, V.A. Why visual attention and awareness are different. Trends Cogn. Sci. 2003, 7, 12–18. [Google Scholar] [CrossRef]
- Neisser, U. Cognitive Psychology; Appleton-Century-Crofts: New York, NY, USA, 1967. [Google Scholar]
- Wundt, W. Grundriß der Psychologie (Compendium of Psychology); Engelmann: Leipzig, Germany, 1896. [Google Scholar]
- Van Boxtel, J.J.A.; Tsuchiya, N.; Koch, C. Consciousness and attention: On sufficiency and necessity. Front. Psychol. 2010, 1, 217. [Google Scholar] [CrossRef]
- Treisman, A.M.; Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 1980, 12, 97–136. [Google Scholar] [CrossRef]
- McCormick, P.A. Orienting attention without awareness. J. Exp. Psychol. Hum. 1997, 23, 168–180. [Google Scholar] [CrossRef]
- Scharlau, I.; Ansorge, U. Direct parameter specification of an attention shift: Evidence from perceptual latency priming. Vision Res. 2003, 43, 1351–1363. [Google Scholar] [CrossRef]
- Jonides, J. Voluntary Versus Automatic Control Over the Mind’s Eye’s Movement. In Attention and Performance; Long, J., Baddeley, A., Eds.; Erlbaum: Hillsdale, NJ, USA, 1981; Volume IX, pp. 187–203. [Google Scholar]
- Müller, H.J.; Rabbitt, P.M.A. Reflexive and voluntary orienting of visual-attention—Time course of activation and resistance to interruption. J. Exp. Psychol. Hum. 1989, 15, 315–330. [Google Scholar] [CrossRef]
- Posner, M.I. Orienting of attention. Q. J. Exp. Psychol. 1980, 32, 3–25. [Google Scholar] [CrossRef]
- Hu, F.; Samuel, A.; Chan, A. Eliminating inhibition of return by changing salient nonspatial attributes in a complex environment. J. Exp. Psychol. Gen. 2011, 140, 35–50. [Google Scholar] [CrossRef]
- Posner, M.I.; Cohen, Y. Components of Visual Orienting. In Attention and Performance; Bouma, H., Bouwhuis, D.G., Eds.; Erlbaum: Hillsdale, NJ, USA, 1984; Volume X, pp. 531–556. [Google Scholar]
- Taylor, T.L.; Klein, R.M. On the causes and effects of inhibition of return. Psychon. Bull. Rev. 1998, 5, 625–643. [Google Scholar] [CrossRef]
- Mulckhuyse, M.; Talsma, D.; Theeuwes, J. Grabbing attention without knowing: Automatic capture of attention by subliminal spatial cues. Vis. Cogn. 2007, 15, 779–788. [Google Scholar] [CrossRef]
- Ivanoff, J.; Klein, R.M. Orienting of attention without awareness is affected by measurement-induced attentional control settings. J. Vis. 2003, 3, 32–40. [Google Scholar]
- Mulckhuyse, M.; Theeuwes, J. Unconscious attentional orienting to exogenous cues: A review of the literature. Acta Psychol. 2010, 134, 299–309. [Google Scholar] [CrossRef]
- Tapia, E.; Breitmeyer, B.G. Visual consciousness revisited: Magnocellular and parvocellular contributions to conscious and nonconscious vision. Psychol. Sci. 2011, 22, 934–942. [Google Scholar] [CrossRef]
- Lamme, V.A.F.; Roelfsema, P.R. The distinct modes offered by feedforward and recurrent processing. Trends Neurosci. 2000, 23, 571–579. [Google Scholar] [CrossRef]
- Milner, A.D.; Goodale, M.A. The Visual Brain in Action; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Marrocco, R.T.; Li, R.H. Monkey superior colliculus—Properties of single cells and their afferent inputs. J. Neurophysiol. 1977, 40, 844–860. [Google Scholar]
- Schiller, P.H.; Malpeli, J.G. Properties and tectal projections of monkey retinal ganglion-cells. J. Neurophysiol. 1977, 40, 428–445. [Google Scholar]
- Sparks, D.L. Translation of sensory signals into commands for control of saccadic eye-movements—Role of primate superior colliculus. Physiol. Rev. 1986, 66, 118–171. [Google Scholar]
- Kaplan, E.; Shapley, R.M. The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proc. Natl. Acad. Sci. USA 1986, 83, 2755–2757. [Google Scholar] [CrossRef]
- Merigan, W.H.; Maunsell, J. How parallel are the primate visual pathways? Annu Rev. Neurosci. 1993, 16, 369–402. [Google Scholar] [CrossRef]
- Steinman, B.A.; Steinman, S.B.; Lehmkuhle, S. Transient visual attention is dominated by the magnocellular stream. Vis. Res. 1997, 37, 17–23. [Google Scholar] [CrossRef]
- Fuchs, I.; Ansorge, U.; Theeuwes, J. Attentional capture by subliminal abrupt-onset cues. Perception 2011, 40, 69. [Google Scholar]
- De Gelder, B.; Vroomen, J.; Pourtois, G.; Weiskrantz, L. Non-conscious recognition of affect in the absence of striate cortex. Neuroreport 1999, 10, 3759–3763. [Google Scholar] [CrossRef]
- Weiskrantz, L.; Warrington, E.K.; Sanders, M.D.; Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 1974, 97, 709–728. [Google Scholar] [CrossRef]
- Schmid, M.; Mrowka, S.; Turchi, J.; Saunders, R.; Wilke, M.; Peters, A.; Ye, F.; Leopolod, D. Blindsight depends on the lateral geniculate nucleus. Nature 2010, 466, 373–377. [Google Scholar] [CrossRef]
- Fecteau, J.H.; Bell, A.H.; Munoz, D.P. Neural correlates of the automatic and the goal-driven biases in orienting spatial attention. J. Neurophysiol. 2004, 92, 1728–1732. [Google Scholar] [CrossRef]
- Ansorge, U.; Horstmann, G.; Worschech, F. Attentional capture by masked colour singletons. Vis. Res. 2010, 50, 2015–2027. [Google Scholar] [CrossRef]
- Ansorge, U.; Kiss, M.; Eimer, M. Goal-driven attentional capture by invisible colors: Evidence from event-related potentials. Psychon. Bull. Rev. 2009, 16, 648–653. [Google Scholar] [CrossRef]
- Roorda, A.; Williams, D.R. The arrangement of the three cone classes in the living human eye. Nature 1999, 397, 520–522. [Google Scholar] [CrossRef]
- Gunther, K.L.; Dobkins, K.R. Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye. Vis. Res. 2002, 42, 1367–1378. [Google Scholar] [CrossRef]
- Fuller, S.; Yunosoo, P.; Carrasco, M. Cue contrast modulates the effects of exogenous attention on appearance. Vis. Res. 2009, 49, 1825–1837. [Google Scholar] [CrossRef]
- Kastner, S.; Ungerleider, L.G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 2000, 23, 315–341. [Google Scholar] [CrossRef]
- Reynolds, J.H.; Chelazzi, L.; Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 1999, 19, 1736–1753. [Google Scholar]
- Corbetta, M.; Miezin, F.M.; Dobmeyer, S.; Shulman, G.L.; Petersen, S.E. Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. J. Neurosci. 1991, 11, 2383–2402. [Google Scholar]
- White, B.J.; Boehnke, S.E.; Marino, R.A.; Itti, L.; Munoz, D.P. Color-related signals in the primate superior colliculus. J. Neurosci. 2009, 29, 12159–12166. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Y.; Felleman, D.J. A spatially organized representation of color in macaque cortical area V2. Nature 2003, 412, 535–539. [Google Scholar] [CrossRef]
- Anstis, A.; Cavanagh, P. A Minimum Motion Technique for Judging Equiluminance. In Color Vision: Psychophysics and Physiology; Mollon, J.D., Ed.; Academic Press: London, UK, 1983; pp. 155–166. [Google Scholar]
- Ansorge, U. Asymmetric influences of temporally vs. nasally presented masked visual information: Evidence for collicular contributions to nonconscious priming effects. Brain Cogn. 2003, 51, 317–325. [Google Scholar] [CrossRef]
- Folk, C.L.; Remington, R.W.; Johnston, J.C. Involuntary covert orienting is contingent on attentional control settings. J. Exp. Psychol. Gen. Hum. 1992, 18, 1030–1044. [Google Scholar] [CrossRef]
- Merikle, P.M.; Smilek, D.; Eastwood, J.D. Perception without awareness: Perspectives from cognitive psychology. Cognition 2001, 79, 115–134. [Google Scholar] [CrossRef]
- Greenwald, A.G.; Draine, S.C.; Abrams, R.L. Three cognitive markers of unconscious semantic activation. Science 1996, 273, 1699–1702. [Google Scholar] [CrossRef]
- Fuchs, I.; Ansorge, U. Inhibition of return is no hallmark of exogenous capture by unconscious cues. Front. Hum. Neurosci. 2012, 6, 30. [Google Scholar]
- Scharlau, I.; Ansorge, U.; Horstmann, G. Latency facilitation in temporal-order judgments: Time course of facilitation as a function of judgment type. Acta Psychol. 2006, 122, 129–159. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 2000, 40, 1489–1506. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C. Computational modelling of visual attention. Nat. Rev. Neurosci. 2001, 2, 194–203. [Google Scholar] [CrossRef]
- Rafal, R.; Henik, A.; Smith, J. Extrageniculate contributions to reflex visual orienting in normal humans: A temporal hemifield advantage. J. Cogn. Neurosci. 1991, 3, 322–328. [Google Scholar] [CrossRef]
- Sterling, P. Quantitative mapping with the electron microscope: Retinal terminals in the superior colliculus. Brain Res. 1973, 54, 347–354. [Google Scholar] [CrossRef]
- Sylvester, R.; Josephs, O.; Driver, J.; Rees, G. Visual fMRI responses in human superior colliculus show a temporal-nasal asymmetry that is absent in lateral geniculate and visual cortex. J. Neurophysiol. 2007, 97, 1495–1502. [Google Scholar] [CrossRef]
- Gibson, B.S.; Amelio, J. Inhibition of return and attentional control settings. Percept. Psychophys. 2000, 62, 496–504. [Google Scholar] [CrossRef]
- Yantis, S.; Jonides, J. Abrupt visual onsets and selective attention—Voluntary versus automatic allocation. J. Exp. Psychol. Hum. 1990, 16, 121–134. [Google Scholar] [CrossRef]
- Bacon, W.F.; Egeth, H.E. Overriding stimulus-driven attentional capture. Percept. Psychophys. 1994, 55, 485–496. [Google Scholar] [CrossRef]
Appendix
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fuchs, I.; Ansorge, U. Unconscious Cueing via the Superior Colliculi: Evidence from Searching for Onset and Color Targets. Brain Sci. 2012, 2, 33-60. https://doi.org/10.3390/brainsci2010033
Fuchs I, Ansorge U. Unconscious Cueing via the Superior Colliculi: Evidence from Searching for Onset and Color Targets. Brain Sciences. 2012; 2(1):33-60. https://doi.org/10.3390/brainsci2010033
Chicago/Turabian StyleFuchs, Isabella, and Ulrich Ansorge. 2012. "Unconscious Cueing via the Superior Colliculi: Evidence from Searching for Onset and Color Targets" Brain Sciences 2, no. 1: 33-60. https://doi.org/10.3390/brainsci2010033
APA StyleFuchs, I., & Ansorge, U. (2012). Unconscious Cueing via the Superior Colliculi: Evidence from Searching for Onset and Color Targets. Brain Sciences, 2(1), 33-60. https://doi.org/10.3390/brainsci2010033