A Permutation Entropy Method for Sleep Disorder Screening
Abstract
1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Detrended Fluctuation Analysis
2.3. Permutation Entropy
2.4. Scaling Exponent from PE Time Series
2.5. Computational Tools and Environment
3. Results
3.1. Statistical Analysis for RBD and Healthy Conditions
3.2. Subject Classification
3.3. Comparison with Existing Methods
4. Discussion
4.1. Methodological and Theoretical Implications
4.2. Clinical and Practical Advantages
- Scalability: The use of single-channel EEG and computational efficiency makes this method suitable for wearable or at-home devices.
- Generalizability: By avoiding syndrome-specific assumptions, the classifier is adaptable to comorbid or undiagnosed conditions, a critical advantage for early screening.
- Non-Invasiveness: Compared to polysomnography, this approach reduces the need for multichannel recordings, lowering costs and patient burden.
- Dataset Constraints: The method is robust with respect to heterogeneity in sampling rates and channels (Table 1). However, future validation in larger, standardized cohorts is needed (see below).
- Absence of Sleep Staging Context: While epoch-level PE was computed, the FS exponent was derived from whole-night signals, disentangling pathology effects from sleep-stage-specific dynamics (e.g., NREM vs. REM).
- Robustness to First-Night Effects: As shown in Section 3, no significant differences were found between nights in the Sleep Cassette study, indicating that our method is not affected by adaptation effects.
4.3. Limitations
- Pathology-Specific Variability: Lower accuracy for insomnia (65%) and narcolepsy (64%) suggests these conditions may require complementary information (e.g., autonomic measures).
- Limited Sample Sizes for Rare Conditions: Small cohorts (e.g., n = 4 for SDB, n = 5 for NARCO) reduce statistical power and generalizability. Aggregating pathologies mitigated this but may obscure condition-specific signatures.
- Static Thresholding: The binary classifier used a fixed FS threshold (e.g., 1.18 for all pathologies), which may ignore potential inter-individual variability in FS exponents due to age, medication, or comorbidities. This could be refined via personalized thresholds or continuous risk scoring.
- Unknown influence of gender, age, and, and comorbidities: The small sample sizes for some sleep disorder categories, limited the ability to fully analyze the variability of the fractal scaling exponent across age, gender, and comorbidities. This constrains the interpretation of the exponent as a generalized clinical biomarker.
- Comparisons with raw EEG data: While we emphasize the simplicity of applying our method directly to available EEG data, it would be necessary to compute the fractal scaling exponent using raw, unfiltered EEG signals to evaluate the potential impact of preprocessing steps such as filtering.
- Absence of external cross-validation: The fractal scaling exponent was estimated from subjects within the same database. This limits the demographic diversity and generalizability of the biomarker.
5. Conclusions and Further Research
5.1. Steps Towards a Paradigm Shift
5.2. Theoretical Implications in Neurophysiology
5.3. Future Directions
- 1.
- Integration with actigraphy or heart rate variability to enhance specificity.
- 2.
- Longitudinal applications to track disease progression (e.g., RBD as a prodrome to Parkinson’s [7]).
- 3.
- Real-time implementation in clinical wearables for continuous monitoring.
- 4.
- The use of sleep-stage context, which might enhance the classifier’s specificity.
- 5.
- The fixed threshold could be refined using population-adjusted or adaptive models to account for inter-individual variability.
- 6.
- Collaborate with initiatives like the National Sleep Research Resource (NSRR) to access larger, harmonized datasets.
- 7.
- Combine FS exponents with time-domain features (e.g., spectral power, Hjorth parameters) to capture complementary information.
- 8.
- Analyze the PE time series in more complex terms, for instance, multifractality.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Evaluation of Classification Threshold Robustness
Classification | F1-Score (−SD) | F1-Score () | F1-Score ( + SD) |
---|---|---|---|
SDB vs. healthy | 0.678 | 0.679 | 0.669 |
RBD vs. healthy | 0.808 | 0.886 | 0.869 |
PLM vs. healthy | 0.673 | 0.757 | 0.732 |
INS vs. healthy | 0.540 | 0.648 | 0.646 |
NARCO vs. healthy | 0.599 | 0.644 | 0.629 |
All pathologies vs. healthy | 0.730 | 0.739 | 0.722 |
References
- Gottesman, R.F.; Lutsey, P.L.; Benveniste, H.; Brown, D.L.; Full, K.M.; Lee, J.M.; Osorio, R.S.; Pase, M.P.; Redeker, N.S.; Redline, S.; et al. Impact of Sleep Disorders and Disturbed Sleep on Brain Health: A Scientific Statement from the American Heart Association. Stroke 2024, 55, e61–e76. [Google Scholar] [CrossRef] [PubMed]
- Gilley, R.R. The Role of Sleep in Cognitive Function: The Value of a Good Night’s Rest. Clin. EEG Neurosci. 2023, 54, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Porter, V.R.; Buxton, W.G.; Avidan, A.Y. Sleep, Cognition and Dementia. Curr. Psychiatry Rep. 2015, 17, 97. [Google Scholar] [CrossRef]
- Yan, T.; Qiu, Y.; Yu, X.; Yang, L. Glymphatic Dysfunction: A Bridge Between Sleep Disturbance and Mood Disorders. Front. Psychiatry 2021, 12, 658340. [Google Scholar] [CrossRef]
- Pearson, O.; Uglik-Marucha, N.; Miskowiak, K.W.; Cairney, S.A.; Rosenzweig, I.; Young, A.H.; Stokes, P.R. The relationship between sleep disturbance and cognitive impairment in mood disorders: A systematic review. J. Affect. Disord. 2023, 327, 207–216. [Google Scholar] [CrossRef] [PubMed]
- De Boer, M.; Nijdam, M.J.; Jongedijk, R.A.; Bangel, K.A.; Olff, M.; Hofman, W.F.; Talamini, L.M. The spectral fingerprint of sleep problems in post-traumatic stress disorder. Sleep 2019, 43, zsz269. [Google Scholar] [CrossRef]
- Barone, D.A. Dream enactment behavior—A real nightmare: A review of post-traumatic stress disorder, REM sleep behavior disorder, and trauma-associated sleep disorder. J. Clin. Sleep Med. 2020, 16, 1943–1948. [Google Scholar] [CrossRef]
- Palagini, L.; Geoffroy, P.A.; Miniati, M.; Perugi, G.; Biggio, G.; Marazziti, D.; Riemann, D. Insomnia, sleep loss, and circadian sleep disturbances in mood disorders: A pathway toward neurodegeneration and neuroprogression? A theoretical review. CNS Spectrums 2022, 27, 298–308. [Google Scholar] [CrossRef]
- Fezeu, F.; Jbarah, O.; Jbarah, A.; Choucha, A.; De Maria, L.; Ciaglia, E.; De Simone, M.; Samnick, S. PET imaging for a very early Detection of Rapid Eye Movement Sleep Behaviour Disorder and Parkinson’s Disease—A Model-Based Cost-Effectiveness Analysis. Clin. Neurol. Neurosurg. 2024, 243, 108404. [Google Scholar] [CrossRef]
- Panossian, L.A.; Avidan, A.Y. Review of Sleep Disorders. Med. Clin. N. Am. 2009, 93, 407–425. [Google Scholar] [CrossRef]
- Cavelli, M.; Rojas-Líbano, D.; Schwarzkopf, N.; Castro-Zaballa, S.; Gonzalez, J.; Mondino, A.; Santana, N.; Benedetto, L.; Falconi, A.; Torterolo, P. Power and coherence of cortical high-frequency oscillations during wakefulness and sleep. Eur. J. Neurosci. 2018, 48, 2728–2737. [Google Scholar] [CrossRef]
- Malhotra, R.K. Neurodegenerative Disorders and Sleep. Sleep Med. Clin. 2022, 17, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Al-Fahoum, A.S.; Al-Fraihat, A.A. Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. Int. Sch. Res. Not. 2014, 2014, 730218. [Google Scholar] [CrossRef]
- Xu, S.; Faust, O.; Seoni, S.; Chakraborty, S.; Barua, P.D.; Loh, H.W.; Elphick, H.; Molinari, F.; Acharya, U.R. A review of automated sleep disorder detection. Comput. Biol. Med. 2022, 150, 106100. [Google Scholar] [CrossRef]
- Almuhammadi, W.S.; Aboalayon, K.A.; Faezipour, M. Efficient obstructive sleep apnea classification based on EEG signals. In Proceedings of the 2015 Long Island Systems, Applications and Technology, Farmingdale, NY, USA, 1 May 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Qu, W.; Kao, C.H.; Hong, H.; Chi, Z.; Grunstein, R.; Gordon, C.; Wang, Z. Single-channel EEG based insomnia detection with domain adaptation. Comput. Biol. Med. 2021, 139, 104989. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Patel, V.; Tiwari, J.; Acharya, U.R. Automated characterization of cyclic alternating pattern using wavelet-based features and ensemble learning techniques with EEG signals. Diagnostics 2021, 11, 1380. [Google Scholar] [CrossRef]
- Terzano, M.; Parrino, L.; Smerieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.; Moldofsky, H.; Rosa, A.; et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 2001, 2, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Chouvarda, I.; Rosso, V.; Mendez, M.O.; Bianchi, A.M.; Parrino, L.; Grassi, A.; Terzano, M.; Cerutti, S. Assessment of the EEG complexity during activations from sleep. Comput. Methods Programs Biomed. 2011, 104, e16–e28. [Google Scholar] [CrossRef]
- Kryger, M.H. Atlas of Clinical Sleep Medicine: Expert Consult; Elsevier Health Sciences: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Bandt, C. A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure. Entropy 2017, 19, 197. [Google Scholar] [CrossRef]
- Rosso, O.A.; Larrondo, H.; Martin, M.T.; Plastino, A.; Fuentes, M.A. Distinguishing noise from chaos. Phys. Rev. Lett. 2007, 99, 154102. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.D.; Pacheco, M.; Iaconis, F.R.; Rosso, O.A.; Gasaneo, G.; Delrieux, C.A. Statistical Complexity Analysis of Sleep Stages. Entropy 2025, 27, 76. [Google Scholar] [CrossRef]
- Hou, F.; Zhang, L.; Qin, B.; Gaggioni, G.; Liu, X.; Vandewalle, G. Changes in EEG permutation entropy in the evening and in the transition from wake to sleep. Sleep 2021, 44, zsaa226. [Google Scholar] [CrossRef] [PubMed]
- Mateos, D.; Guevara Erra, R.; Wennberg, R.; Perez Velazquez, J. Measures of entropy and complexity in altered states of consciousness. Cogn. Neurodynamics 2018, 12, 73–84. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef]
- Bachmann, M.; Lass, J.; Hinrikus, H. Single channel EEG analysis for detection of depression. Biomed. Signal Process. Control 2017, 31, 391–397. [Google Scholar] [CrossRef]
- Oliveira Filho, F.M.; Ribeiro, F.F.; Leyva Cruz, J.A.; Nunes de Castro, A.P.; Zebende, G.F. Statistical study of the EEG in motor tasks (real and imaginary). Phys. A Stat. Mech. Its Appl. 2023, 622, 128802. [Google Scholar] [CrossRef]
- Farag, A.F.; El-Metwally, S.M.; Morsy, A.A.A. Automated sleep staging using detrended fluctuation analysis of sleep EEG. In Proceedings of the 5th International Workshop Soft Computing Applications (SOFA), Szeged, Hungary, 22–24 August 2012; Springer: Berlin/Heidelberg, Germany, 2013; pp. 501–510. [Google Scholar] [CrossRef]
- Lee, J.M.; Kim, D.J.; Kim, I.Y.; Park, K.S.; Kim, S.I. Nonlinear-analysis of human sleep EEG using detrended fluctuation analysis. Med. Eng. Phys. 2004, 26, 773–776. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, X.M.; Zeng, W.J. Automatic detection of sleep apnea based on EEG detrended fluctuation analysis and support vector machine. J. Clin. Monit. Comput. 2015, 29, 767–772. [Google Scholar] [CrossRef]
- Kemp, B.; Zwinderman, A.; Tuk, B.; Kamphuisen, H.; Oberyé, J. Analysis of a sleep-dependent neuronal feedback loop: The slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 2000, 47, 1185–1194. [Google Scholar] [CrossRef]
- American Academy of Sleep Medicine. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Darien, IL, USA, 2023. [Google Scholar]
- Peng, C.K.; Buldyrev, S.; Goldberger, A.; Havlin, S.; Simons, M.; Stanley, H. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef] [PubMed]
- Iaconis, F.; Gandica, A.; Punta, J.; Delrieux, C.; Gasaneo, G. Information-theoretic characterization of eye-tracking signals with relation to cognitive tasks. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 033107. [Google Scholar] [CrossRef] [PubMed]
- De Simone, M.; De Feo, R.; Choucha, A.; Ciaglia, E.; Fezeu, F. Enhancing Sleep Quality: Assessing the Efficacy of a Fixed Combination of Linden, Hawthorn, Vitamin B1, and Melatonin. Med. Sci. 2023, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Pereda, E.; Quiroga, R.Q.; Bhattacharya, J. Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 2005, 77, 1–37. [Google Scholar] [CrossRef]
- West, B.J. Fractal physiology and the fractional calculus: A perspective. Front. Physiol. 2010, 1, 12. [Google Scholar] [CrossRef]
Condition | Database | Subject Count | EEG Channels | SR (Hz) | LP Filter (Hz) |
---|---|---|---|---|---|
SDB | CAP | 1 | C4-A1 and F4-C4 | 512 | 30 |
3 | C4-A1 and F4-C4 | 256 | 30 | ||
NFLE | CAP | 29 | C4-A1 and F4-C4 | 512 | 30 |
9 | C4-A1 and F4-C4 | 256 | 30 | ||
RBD | CAP | 22 | C4-A1 and F4-C4 | 512 | 30 |
PLM | CAP | 9 | C4-A1 and F4-C4 | 512 | 30 |
1 | C4-A1 and F4-C4 | 256 | 30 | ||
INS | CAP | 7 | C4-A1 and F4-C4 | 512 | 30 |
2 | C4-A1 and F4-C4 | 256 | 30 | ||
NARCO | CAP | 5 | C4-A1 and F4-C4 | 512 | 30 |
Healthy | CAP | 6 | C4-A1 and F4-C4 | 512 | 30 |
1 | C4-A1 and F4-C4 | 200 | 100 | ||
1 | C4-A1 and F4-C4 | 100 | 50 | ||
3 | C4-A1 | 200 | 100 | ||
1 | C4-A1 | 100 | 50 | ||
1 | F4-C4 | 200 | 100 | ||
Expanded | 99 | Fpz-Cz | 100 | 50 |
Condition | Channel | SD | |
---|---|---|---|
SDB | C4-A1 | 1.12 | 0.02 |
F4-C4 | 1.12 | 0.04 | |
NFLE | C4-A1 | 1.15 | 0.11 |
F4-C4 | 1.15 | 0.11 | |
RBD | C4-A1 | 1.06 | 0.06 |
F4-C4 | 1.05 | 0.06 | |
PLM | C4-A1 | 1.11 | 0.06 |
F4-C4 | 1.10 | 0.06 | |
INS | C4-A1 | 1.17 | 0.01 |
F4-C4 | 1.18 | 0.02 | |
NARCO | C4-A1 | 1.16 | 0.01 |
F4-C4 | 1.16 | 0.01 | |
Healthy | C4-A1 | 1.24 | 0.09 |
F4-C4 | 1.20 | 0.06 | |
Fpz-Cz | 1.24 | 0.09 |
Classification | Threshold | F1-Score | Weighted Accuracy |
---|---|---|---|
SDB vs. healthy | 1.14 | 0.68 | 0.88 |
RBD vs. healthy | 1.11 | 0.89 | 0.90 |
PLM vs. healthy | 1.11 | 0.78 | 0.89 |
INS vs. healthy | 1.17 | 0.65 | 0.77 |
NARCO vs. healthy | 1.17 | 0.64 | 0.80 |
All pathologies vs. healthy | 1.18 | 0.74 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, C.D.; Meo, M.M.; Iaconis, F.R.; Wainselboim, A.; Gasaneo, G.; Delrieux, C. A Permutation Entropy Method for Sleep Disorder Screening. Brain Sci. 2025, 15, 691. https://doi.org/10.3390/brainsci15070691
Duarte CD, Meo MM, Iaconis FR, Wainselboim A, Gasaneo G, Delrieux C. A Permutation Entropy Method for Sleep Disorder Screening. Brain Sciences. 2025; 15(7):691. https://doi.org/10.3390/brainsci15070691
Chicago/Turabian StyleDuarte, Cristina D., Marcos M. Meo, Francisco R. Iaconis, Alejandro Wainselboim, Gustavo Gasaneo, and Claudio Delrieux. 2025. "A Permutation Entropy Method for Sleep Disorder Screening" Brain Sciences 15, no. 7: 691. https://doi.org/10.3390/brainsci15070691
APA StyleDuarte, C. D., Meo, M. M., Iaconis, F. R., Wainselboim, A., Gasaneo, G., & Delrieux, C. (2025). A Permutation Entropy Method for Sleep Disorder Screening. Brain Sciences, 15(7), 691. https://doi.org/10.3390/brainsci15070691