Rethinking Melatonin Dosing: Safety and Efficacy at Higher-than-Usual Levels in Aged Patients with Sleep Disturbances and Comorbidities
Abstract
1. Introduction
2. Patients and Methods
2.1. Design
2.2. Participants
2.3. Melatonin Administration
2.4. Measures
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Sanabria, F.; Carmassi, C.; Bruno, S.; Bazzani, A.; Carli, M.; Scarselli, M.; Faraguna, U. Melatonin as a Chronobiotic with Sleep-Promoting Properties. Curr. Neuropharmacol. 2023, 21, 951–987. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Sanabria, F.; Bruno, S.; Crippa, A.; Frumento, P.; Scarselli, M.; Skene, D.J.; Faraguna, U. Optimizing the Time and Dose of Melatonin as a Sleep-Promoting Drug: A Systematic Review of Randomized Controlled Trials and Dose-Response Meta-Analysis. J. Pineal Res. 2024, 76, e12985. [Google Scholar] [CrossRef] [PubMed]
- Kotagal, S.; Malow, B.; Spruyt, K.; Wang, G.; Bolaños Almeida, C.E.; Tavera Saldaña, L.M.; Blunden, S.; Narang, I.; Ipsiroglu, O.S.; Bruni, O.; et al. Melatonin Use in Managing Insomnia in Children with Autism and Other Neurogenetic Disorders—An Assessment by the International Pediatric Sleep Association (IPSA). Sleep Med. 2024, 119, 222–228. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Chuffa, L.G.d.A.; Simko, F.; Dominguez-Rodriguez, A. Mitochondrial Melatonin: Beneficial Effects in Protecting against Heart Failure. Life 2024, 14, 88. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Tan, D.X.; Chuffa, L.G.d.A.; da Silva, D.G.H.; Slominski, A.T.; Steinbrink, K.; Kleszczynski, K. Dual Sources of Melatonin and Evidence for Different Primary Functions. Front. Endocrinol. 2024, 15, 1414463. [Google Scholar] [CrossRef]
- Méndez, N.; Corvalan, F.; Halabi, D.; Ehrenfeld, P.; Maldonado, R.; Vergara, K.; Seron-Ferre, M.; Torres-Farfan, C. From Gestational Chronodisruption to Noncommunicable Diseases: Pathophysiological Mechanisms of Programming of Adult Diseases, and the Potential Therapeutic Role of Melatonin. J. Pineal Res. 2023, 75, e12908. [Google Scholar] [CrossRef] [PubMed]
- Ziaei, S.; Hasani, M.; Malekahmadi, M.; Daneshzad, E.; Kadkhodazadeh, K.; Heshmati, J. Effect of Melatonin Supplementation on Cardiometabolic Risk Factors, Oxidative Stress and Hormonal Profile in PCOS Patients: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Ovarian Res. 2024, 17, 138. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Vigo, D.E. Chronobiotic and Cytoprotective Activity of Melatonin in the Cardiovascular System. Doses Matter. npj Biol. Timing Sleep 2024, 1, 7. [Google Scholar] [CrossRef]
- Cardinali, D.P. Melatonin as a Chronobiotic/Cytoprotective Agent in Bone. Doses Involved. J. Pineal Res. 2024, 76, e12931. [Google Scholar] [CrossRef]
- Galley, H.F.; Lowes, D.A.; Allen, L.; Cameron, G.; Aucott, L.S.; Webster, N.R. Melatonin as a Potential Therapy for Sepsis: A Phase Dose Escalation Study and an Ex Vivo Whole Blood Model under Conditions of Sepsis. J. Pineal Res. 2014, 56, 427–438. [Google Scholar] [CrossRef]
- Zetner, D.; Andersen, L.P.H.; Rosenberg, J. Pharmacokinetics of Alternative Administration Routes of Melatonin: A Systematic Review. Drug Res. 2016, 66, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Rodriguez, A.; Abreu-Gonzalez, P.; Sanchez-Sanchez, J.J.; Kaski, J.C.; Reiter, R.J. Melatonin and Circadian Biology in Human Cardiovascular Disease. J. Pineal Res. 2010, 49, 14–22. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, A.; Abreu-González, P.; Báez-Ferrer, N.; Reiter, R.J.; Avanzas, P.; Hernández-Vaquero, D. Melatonin and Cardioprotection in Humans: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Cardiovasc. Med. 2021, 8, 635083. [Google Scholar] [CrossRef]
- Jiki, Z.; Lecour, S.; Nduhirabandi, F. Cardiovascular Benefits of Dietary Melatonin: A Myth or a Reality? Front. Physiol. 2018, 9, 528. [Google Scholar] [CrossRef]
- Nduhirabandi, F.; Maarman, G.J. Melatonin in Heart Failure: A Promising Therapeutic Strategy? Molecules 2018, 23, 1819. [Google Scholar] [CrossRef]
- Taha, A.M.; Mahmoud, A.M.; Ghonaim, M.M.; Kamran, A.; AlSamhori, J.F.; AlBarakat, M.M.; Shrestha, A.B.; Jaiswal, V.; Reiter, R.J. Melatonin as a Potential Treatment for Septic Cardiomyopathy. Biomed. Pharmacother. 2023, 166, 115305. [Google Scholar] [CrossRef] [PubMed]
- Tobeiha, M.; Jafari, A.; Fadaei, S.; Mirazimi, S.M.A.; Dashti, F.; Amiri, A.; Khan, H.; Asemi, Z.; Reiter, R.J.; Hamblin, M.R.; et al. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front. Cardiovasc. Med. 2022, 9, 888319. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Y.; Wang, Z.; Gan, J.; Yu, B.; Lu, B.; Jiang, X. Melatonin as a Therapeutic Agent for Alleviating Endothelial Dysfunction in Cardiovascular Diseases: Emphasis on Oxidative Stress. Biomed. Pharmacother. 2023, 167, 115475. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. Melatonin as a Natural Ally against Oxidative Stress: A Physicochemical Examination. J. Pineal Res. 2011, 51, 1–16. [Google Scholar] [CrossRef]
- Lissoni, P.; Rovelli, F.; Monzon, A.; Messina, G.; Merli, N.; Tartarelli, R.; Tassoni, S.; Zecchinato, F.; Simoes-e-Silva, A.C.; Valentini, A.; et al. Efficacy of a Neuroimmune Therapy Including Pineal Methoxyindoles, Angiotensin 1-7, and Endocannabinoids in Cancer, Autoimmune, and Neurodegenerative Diseases. Clin. Interv. Aging 2025, 20, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, D.P. Melatonin: Clinical Perspectives in Neurodegeneration. Front. Endocrinol. 2019, 10, 480. [Google Scholar] [CrossRef]
- Valiensi, S.M.; Folgueiras, A.L.; Vera, V.A.; González Cardoso, A.; Cardinali, D.P. A Cross-Sectional Report on the Use of High Doses of Melatonin in Humans. Melatonin Res. 2024, 7, 234–241. [Google Scholar] [CrossRef]
- Hardeland, R. Neurobiology, Pathophysiology, and Treatment of Melatonin Deficiency and Dysfunction. Sci. World J. 2012, 2012, 640389. [Google Scholar] [CrossRef]
- Vasey, C.; McBride, J.; Penta, K. Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients 2021, 13, 3480. [Google Scholar] [CrossRef]
- Asemi, R.; Omidi Najafabadi, E.; Mahmoudian, Z.; Reiter, R.J.; Mansournia, M.A.; Asemi, Z. Melatonin as a Treatment for Atherosclerosis: Focus on Programmed Cell Death, Inflammation and Oxidative Stress. J. Cardiothorac. Surg. 2025, 20, 194. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Romero, A.; Simko, F.; Dominguez-Rodriguez, A.; Cardinali, D.P. Melatonin Stabilizes Atherosclerotic Plaques: An Association That Should Be Clinically Exploited. Front. Med. 2024, 11, 1487971. [Google Scholar] [CrossRef]
- Amin, M.; Rafla, B.; Wu, R.; Postolache, T.T.; Gragnoli, C. The Role of Melatonin Receptor 1B Gene (MTNR1B) in the Susceptibility to Depression and Type 2 Diabetes Comorbidity. Genes Dis. 2024, 11, 101067. [Google Scholar] [CrossRef]
- Contreras-Alcantara, S.; Baba, K.; Tosini, G. Removal of Melatonin Receptor Type 1 Induces Insulin Resistance in the Mouse. Obesity 2010, 18, 1861–1863. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Stumpf, I.; Bazwinsky, I.; Litvak, L.; Dralle, H.; Mühlbauer, E. Melatonin and Type 2 Diabetes—A Possible Link? J. Pineal Res. 2007, 42, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Pourhanifeh, M.H.; Hosseinzadeh, A.; Dehdashtian, E.; Hemati, K.; Mehrzadi, S. Melatonin: New Insights on Its Therapeutic Properties in Diabetic Complications. Diabetol. Metab. Syndr. 2020, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xie, L.; Zhong, M.; Yang, B.; Yang, Q.; Yang, H.; Xie, C. The Association between Melatonin Receptor 1B Gene Polymorphisms and Type 2 Diabetes Mellitus (T2DM) in Chinese Populations: A Meta-Analysis. Ann. Cardiothorac. Surg. 2020, 9, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhao, Z.J.; Liu, H.Y.; Cai, J.; Lu, Q.K.; Ji, L.D.; Xu, J. The Melatonin Receptor 1B Gene Links Circadian Rhythms and Type 2 Diabetes Mellitus: An Evolutionary Story. Ann. Med. 2023, 55, 1262–1286. [Google Scholar] [CrossRef]
- Cuesta, S.; Kireev, R.; García, C.; Rancan, L.; Vara, E.; Tresguerres, J.A.F. Melatonin Can Improve Insulin Resistance and Aging-Induced Pancreas Alterations in Senescence-Accelerated Prone Male Mice (SAMP8). Age 2013, 35, 659–671. [Google Scholar] [CrossRef]
- Lee, Y.H.; Jung, H.S.; Kwon, M.J.; Jang, J.E.; Kim, T.N.; Lee, S.H.; Kim, M.K.; Park, J.H. Melatonin Protects INS-1 Pancreatic β-Cells from Apoptosis and Senescence Induced by Glucotoxicity and Glucolipotoxicity. Islets 2020, 12, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wei, T. Inputs and Outputs of Insulin Receptor. Protein Cell 2014, 5, 203–213. [Google Scholar] [CrossRef]
- She, M.; Deng, X.; Guo, Z.; Laudon, M.; Hu, Z.; Liao, D.; Hu, X.; Luo, Y.; Shen, Q.; Su, Z.; et al. NEU-P11, a Novel Melatonin Agonist, Inhibits Weight Gain and Improves Insulin Sensitivity in High-Fat/High-Sucrose-Fed Rats. Pharmacol. Res. 2009, 59, 248–253. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Patel, R.; Zhang, D.; Lu, H.; Lv, X.; Sun, H.; Ai, S. The Effect of Melatonin Supplementation on Glycemic Control in Patients with Type 2 Diabetes. Front. Endocrinol. 2025, 16, 1572613. [Google Scholar] [CrossRef]
- Carrillo-Vico, A.; Lardone, P.J.; Álvarez-Sanchez, N.; Rodriguez-Rodriguez, A.; Guerrero, J.M. Melatonin: Buffering the Immune System. Int. J. Mol. Sci. 2013, 14, 8638–8683. [Google Scholar] [CrossRef]
- Hardeland, R. Aging, Melatonin, and the Pro-and Anti-Inflammatory Networks. Int. J. Mol. Sci. 2019, 20, 1223. [Google Scholar] [CrossRef]
- Markus, R.P.; Sousa, K.S.; da Silveira Cruz-Machado, S.; Fernandes, P.A.; Ferreira, Z.S. Possible Role of Pineal and Extra-Pineal Melatonin in Surveillance, Immunity, and First-Line Defense. Int. J. Mol. Sci. 2021, 22, 12143. [Google Scholar] [CrossRef] [PubMed]
- Sánchez Rodríguez, J.; Soriano Suárez, E.; Girona Bastús, R.; Pérez Muñoz, P.; Viñets Gelada, C. Why Do Alkaline Phosphatases Increase? Aten. Primaria Soc. Española Med. Fam. Comunitaria 2002, 29, 241–245. [Google Scholar] [CrossRef][Green Version]
- Hussain, S.M.; Seeman, E.; Schneider, H.G.; Ebeling, P.R.; Barker, A.L.; Polkinghorne, K.; Newman, A.B.; Yu, C.; Lacaze, P.; Owen, A.; et al. Association of Serum Phosphate, Calcium and Alkaline Phosphatase With Risk of Incident Fractures in Healthy Older Adults. J. Clin. Endocrinol. Metab. 2024, 109, e2188–e2195. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Reiter, R.J. Clinical Use of Melatonin in Osteoporosis: Expectations Still Unmet. Osteoporos. Int. 2024, 35, 2075–2076. [Google Scholar] [CrossRef]
- Chojnacki, C.; Błońska, A.; Chojnacki, J. The Effects of Melatonin on Elevated Liver Enzymes during Statin Treatment. BioMed Res. Int. 2017, 2017, 3204504. [Google Scholar] [CrossRef]
- Mansoori, A.; Salimi, Z.; Hosseini, S.A.; Hormoznejad, R.; Jafarirad, S.; Bahrami, M.; Asadi, M. The Effect of Melatonin Supplementation on Liver Indices in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Complement. Ther. Med. 2020, 52, 102398. [Google Scholar] [CrossRef] [PubMed]
- Imenshahidi, M.; Karimi, G.; Hosseinzadeh, H. Effects of Melatonin on Cardiovascular Risk Factors and Metabolic Syndrome: A Comprehensive Review. Naunyn Schmiedeberg’s Arch. Pharmacol. 2020, 393, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi-Sartang, M.; Ghorbani, M.; Mazloom, Z. Effects of Melatonin Supplementation on Blood Lipid Concentrations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2018, 37, 1943–1954. [Google Scholar] [CrossRef] [PubMed]
Variable | Melatonin | Control | p | ||||||
---|---|---|---|---|---|---|---|---|---|
N = 81 | N = 81 | ||||||||
Demographic variables | |||||||||
Min | Max | Mean | SD | Min | Max | Mean | SD | ||
Age (years) | 55 | 98 | 74.4 | 9.1 | 52 | 92 | 73.9 | 8.9 | 0.71 |
N | % | N | % | ||||||
Female | 57 | 70.7 | 55 | 67.9 | 0.69 | ||||
Male | 24 | 29.3 | 26 | 32.1 | |||||
Patient-reported history | |||||||||
N | % | N | % | ||||||
CPAP therapy | 36 | 44.4 | 38 | 46.9 | 0.70 | ||||
Alcohol consumption | 2 | 2.4 | 8 | 9.9 | 0.05 | ||||
Liver disease | 4 | 4.9 | 0 | 0 | 0.04 | ||||
Arterial hypertension | 54 | 65.9 | 45 | 55.6 | 0.18 | ||||
Diabetes mellitus | 12 | 14.6 | 15 | 18.5 | 0.50 | ||||
Dyslipidemia | 42 | 51.2 | 46 | 56.8 | 0.48 | ||||
Cardiovascular disease | 9 | 11 | 12 | 14.8 | 0.46 | ||||
Arrhythmias | 7 | 8.5 | 8 | 9.9 | 0.77 | ||||
Cancer | 10 | 12.2 | 7 | 8.6 | 0.46 | ||||
COPD | 10 | 12.2 | 15 | 18.5 | 0.26 | ||||
Hypothyroidism | 25 | 30.5 | 21 | 25.9 | 0.52 | ||||
Gastroesophageal reflux | 10 | 12.2 | 17 | 21 | 0.13 | ||||
Depression/anxiety | 33 | 40.2 | 36 | 44.4 | 0.59 | ||||
Epilepsy | 2 | 2.4 | 0 | 0 | 0.16 | ||||
Parkinson’s | 5 | 6.1 | 0 | 0 | 0.02 | ||||
Migraine or headache | 8 | 9.8 | 7 | 8.6 | 0.81 | ||||
Pain/bruxism/ fibromyalgia | 18 | 22 | 31 | 38.3 | 0.02 |
Disease | Cases Before (n) | Cases After (n) | b (Improve) | c (Worsen) | χ2 | p |
---|---|---|---|---|---|---|
Arterial hypertension | 54 | 9 | 45 | 0 | 45 | <0.001 |
Ischemic heart disease | 6 | 0 | 6 | 0 | 6 | ≈0.01 |
Diabetes mellitus | 12 | 5 | 7 | 0 | 7 | <0.01 |
Cancer | 4 | 6 | 0 | 2 | 2 | ≈0.15 |
Variable | Normal Values | Melatonin | Control | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
N = 81 | N = 81 | |||||||||
Min | Max | Mean | SD | Min | Max | Mean | SD | |||
Age (years) | 55 | 98 | 74.4 | 9.1 | 52 | 92 | 73.9 | 8.9 | 0.71 | |
GOT | 10–42 | 9 | 39 | 17.9 | 4.70 | 7 | 37 | 16.9 | 4.3 | 0.20 |
GPT | 10–40 | 6 | 58 | 16.5 | 8.63 | 5 | 42 | 15.4 | 6.5 | 0.37 |
ALP | 31–100 | 16 | 101 | 64.6 | 17.03 | 34 | 325 | 75.0 | 34.4 | 0.02 |
Total bilirubin | 0.10–1.40 | 0.10 | 1.38 | 0.62 | 0.24 | 0.29 | 1.56 | 0.61 | 0.2 | 0.93 |
Direct bilirubin | 0.00–0.40 | 0.09 | 0.90 | 0.15 | 0.12 | 0.09 | 0.29 | 0.12 | 0.1 | 0.09 |
Total cholesterol | <200–239 | 42 | 290 | 182.9 | 50.2 | 99 | 295 | 181.5 | 39.5 | 0.84 |
Triglycerides | <150–199 | 35 | 358 | 119.9 | 55.8 | 47 | 269 | 120.9 | 49.6 | 0.91 |
HDL cholesterol | ≥40 | 27 | 125 | 57.1 | 15.8 | 28 | 86 | 55.3 | 12.6 | 0.44 |
LDL cholesterol | <110–129 | 25 | 360 | 115.5 | 49.3 | 49 | 210 | 103.9 | 33.4 | 0.10 |
25-hydroxyvitamin D | >30 | 9.2 | 63.8 | 33.4 | 11.8 | 11.7 | 58 | 32.8 | 11.4 | 0.80 |
Ferritin | 10–204 | 12.3 | 795 | 166.6 | 142.2 | 0 | 489.6 | 141.3 | 113.5 | 0.35 |
Transferrin saturation | 20–50 | 8.0 | 75 | 31.4 | 11.4 | 0 | 82.0 | 29.1 | 17.2 | 0.44 |
Vitamin B12 | 187–883 | 120 | 2000 | 521.4 | 427.8 | 0 | 2000 | 488.8 | 417.9 | 0.69 |
Vitamin B6 | Female: 2.0–32.8; Male: 5.3–46.7 | 5.2 | 76.6 | 24.3 | 16.5 | 0 | 92.6 | 23.9 | 25.0 | 0.96 |
Total leukocytes | 4000–10,000/mm3 | 4187 | 61,300 | 7448 | 6372 | 142 | 14,766 | 7104 | 1969 | 0.65 |
Platelets | 150,000–450,000/mm3 | 143,200 | 2,752,000 | 318,377 | 369,586 | 37,300 | 380,900 | 244,677 | 64,278 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valiensi, S.M.; Vera, V.A.; Folgueira, A.L.; Caporale, S.; Ponce de León, M.; Pino Fernández, I.; Vigo, D.E.; Cardinali, D.P. Rethinking Melatonin Dosing: Safety and Efficacy at Higher-than-Usual Levels in Aged Patients with Sleep Disturbances and Comorbidities. Brain Sci. 2025, 15, 1040. https://doi.org/10.3390/brainsci15101040
Valiensi SM, Vera VA, Folgueira AL, Caporale S, Ponce de León M, Pino Fernández I, Vigo DE, Cardinali DP. Rethinking Melatonin Dosing: Safety and Efficacy at Higher-than-Usual Levels in Aged Patients with Sleep Disturbances and Comorbidities. Brain Sciences. 2025; 15(10):1040. https://doi.org/10.3390/brainsci15101040
Chicago/Turabian StyleValiensi, Stella M., Vanesa A. Vera, Agustín L. Folgueira, Sofía Caporale, Marcela Ponce de León, Isis Pino Fernández, Daniel E. Vigo, and Daniel P. Cardinali. 2025. "Rethinking Melatonin Dosing: Safety and Efficacy at Higher-than-Usual Levels in Aged Patients with Sleep Disturbances and Comorbidities" Brain Sciences 15, no. 10: 1040. https://doi.org/10.3390/brainsci15101040
APA StyleValiensi, S. M., Vera, V. A., Folgueira, A. L., Caporale, S., Ponce de León, M., Pino Fernández, I., Vigo, D. E., & Cardinali, D. P. (2025). Rethinking Melatonin Dosing: Safety and Efficacy at Higher-than-Usual Levels in Aged Patients with Sleep Disturbances and Comorbidities. Brain Sciences, 15(10), 1040. https://doi.org/10.3390/brainsci15101040