Elusive Gains of Cognitive Training: Limited Effects on Neural Activity Across Sessions
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Training
2.4. EEG Data Recording and Preprocessing
2.5. Data Analysis
3. Results
3.1. Alpha Power
3.2. Theta Power
3.3. Alpha/Theta Power Ratio
3.4. Fronto-Parietal Coherence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Learning Curve
References
- Baddeley, A.D.; Logie, R.H. Working memory: The multiple-component model. In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control; Cambridge University Press: New York, NY, USA, 1999; pp. 28–61. ISBN 978-0-521-58325-1. [Google Scholar] [CrossRef]
- Park, D.C.; Lautenschlager, G.; Hedden, T.; Davidson, N.S.; Smith, A.D.; Smith, P.K. Models of visuospatial and verbal memory across the adult life span. Psychol. Aging 2002, 17, 299–320. [Google Scholar] [CrossRef]
- Alloway, T.P.; Alloway, R.G. Working memory across the lifespan: A cross-sectional approach. J. Cogn. Psychol. 2013, 25, 84–93. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Jonides, J.; Perrig, W.J. Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. USA 2008, 105, 6829–6833. [Google Scholar] [CrossRef] [PubMed]
- Max Planck Institute for Human Development and Stanford Center on Longevity. A Consensus on the Brain Training Industry from the Scientific Community; Stanford Center on Longevity: Stanford, CA, USA, 2014. [Google Scholar]
- Au, J.; Sheehan, E.; Tsai, N.; Duncan, G.J.; Buschkuehl, M.; Jaeggi, S.M. Improving fluid intelligence with training on working memory: A meta-analysis. Psychon. Bull. Rev. 2015, 22, 366–377. [Google Scholar] [CrossRef] [PubMed]
- Melby-Lervåg, M.; Hulme, C. Is working memory training effective? A meta-analytic review. Dev. Psychol. 2013, 49, 270–291. [Google Scholar] [CrossRef]
- Sala, G.; Gobet, F. Cognitive Training Does Not Enhance General Cognition. Trends Cogn. Sci. 2019, 23, 9–20. [Google Scholar] [CrossRef]
- Soveri, A.; Antfolk, J.; Karlsson, L.; Salo, B.; Laine, M. Working memory training revisited: A multi-level meta-analysis of n-back training studies. Psychon. Bull. Rev. 2017, 24, 1077–1096. [Google Scholar] [CrossRef]
- Taatgen, N.A. The nature and transfer of cognitive skills. Psychol. Rev. 2013, 120, 439–471. [Google Scholar] [CrossRef]
- Dahlin, E.; Neely, A.S.; Larsson, A.; Bäckman, L.; Nyberg, L. Transfer of Learning After Updating Training Mediated by the Striatum. Science 2008, 320, 1510–1512. [Google Scholar] [CrossRef]
- Takeuchi, H.; Taki, Y.; Sassa, Y.; Hashizume, H.; Sekiguchi, A.; Fukushima, A.; Kawashima, R. Working Memory Training Using Mental Calculation Impacts Regional Gray Matter of the Frontal and Parietal Regions. PLoS ONE 2011, 6, e23175. [Google Scholar] [CrossRef]
- Wolf, D.; Fischer, F.U.; Fesenbeckh, J.; Yakushev, I.; Lelieveld, I.M.; Scheurich, A.; Schermuly, I.; Zschutschke, L.; Fellgiebel, A. Structural integrity of the corpus callosum predicts long-term transfer of fluid intelligence-related training gains in normal aging: Callosal Integrity Predicts Training Transfer. Hum. Brain Mapp. 2014, 35, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Boyke, J.; Driemeyer, J.; Gaser, C.; Büchel, C.; May, A. Training-Induced Brain Structure Changes in the Elderly. J. Neurosci. 2008, 28, 7031–7035. [Google Scholar] [CrossRef]
- McKendrick, R.; Ayaz, H.; Olmstead, R.; Parasuraman, R. Enhancing dual-task performance with verbal and spatial working memory training: Continuous monitoring of cerebral hemodynamics with NIRS. NeuroImage 2014, 85, 1014–1026. [Google Scholar] [CrossRef]
- Maclin, E.L.; Mathewson, K.E.; Low, K.A.; Boot, W.R.; Kramer, A.F.; Fabiani, M.; Gratton, G. Learning to multitask: Effects of video game practice on electrophysiological indices of attention and resource allocation. Psychophysiology 2011, 48, 1173–1183. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, R.; Fu, L. Working Memory Updating Function Training Influenced Brain Activity. PLoS ONE 2013, 8, e71063. [Google Scholar] [CrossRef]
- Anguera, J.A.; Boccanfuso, J.; Rintoul, J.L.; Al-Hashimi, O.; Faraji, F.; Janowich, J.; Kong, E.; Larraburo, Y.; Rolle, C.; Johnston, E.; et al. Video game training enhances cognitive control in older adults. Nature 2013, 501, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Buschkuehl, M.; Hernandez-Garcia, L.; Jaeggi, S.M.; Bernard, J.A.; Jonides, J. Neural effects of short-term training on working memory. Cogn. Affect. Behav. Neurosci. 2014, 14, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Borghini, G.; Aricò, P.; Graziani, I.; Salinari, S.; Sun, Y.; Taya, F.; Bezerianos, A.; Thakor, N.V.; Babiloni, F. Quantitative Assessment of the Training Improvement in a Motor-Cognitive Task by Using EEG, ECG and EOG Signals. Brain Topogr. 2016, 29, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Taya, F.; Sun, Y.; Babiloni, F.; Thakor, N.; Bezerianos, A. Brain enhancement through cognitive training: A new insight from brain connectome. Front. Syst. Neurosci. 2015, 9, 44. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Troller-Renfree, S.V.; Morales, S.; Buzzell, G.A.; McSweeney, M.; Antúnez, M.; Fox, N.A. Theta activity and cognitive functioning: Integrating evidence from resting-state and task-related developmental electroencephalography (EEG) research. Dev. Cogn. Neurosci. 2024, 67, 101404. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Puma, S.; Matton, N.; Paubel, P.-V.; Raufaste, É.; El-Yagoubi, R. Using theta and alpha band power to assess cognitive workload in multitasking environments. Int. J. Psychophysiol. 2018, 123, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Lubar, J.F.; Stathopoulou, S. Electroencephalographic peak alpha frequency correlates of cognitive traits. Neurosci. Lett. 2004, 371, 60–63. [Google Scholar] [CrossRef]
- Clark, C.R.; Veltmeyer, M.D.; Hamilton, R.J.; Simms, E.; Paul, R.; Hermens, D.; Gordon, E. Spontaneous alpha peak frequency predicts working memory performance across the age span. Int. J. Psychophysiol. 2004, 53, 1–9. [Google Scholar] [CrossRef]
- Grandy, T.H.; Werkle-Bergner, M.; Chicherio, C.; Lövdén, M.; Schmiedek, F.; Lindenberger, U. Individual alpha peak frequency is related to latent factors of general cognitive abilities. Neuroimage 2013, 79, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Jelic, V.; Johansson, S.E.; Almkvist, O.; Shigeta, M.; Julin, P.; Nordberg, A.; Winblad, B.; Wahlund, L.-O. Quantitative electroencephalography in mild cognitive impairment: Longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol. Aging 2000, 21, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Prichep, L.S.; John, E.R.; Ferris, S.H.; Rausch, L.; Fang, Z.; Cancro, R.; Torossian, C.; Reisberg, B. Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiol. Aging 2006, 27, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Cummins TA, D.; Broughton, M.; Finnigan, S. Theta oscillations are affected by mild cognitive impairment and cognitive load. Int. J. Psychophysiol. 2008, 70, 75–81. [Google Scholar] [CrossRef]
- Finnigan, S.; Robertson, I.H. Resting EEG theta power correlates with cognitive performance in healthy older adults. Psychophysiology 2011, 48, 1083–1087. [Google Scholar] [CrossRef]
- Vlahou, E.L.; Thurm, F.; Kolassa, I.T.; Schlee, W. Resting-state slow wave power, healthy aging and cognitive performance. Sci. Rep. 2014, 4, 5101. [Google Scholar] [CrossRef]
- Schmidt, M.T.; Kanda, P.A.M.; Basile, L.F.H.; Lopes, H.F.d.S.; Baratho, R.; Demario, J.L.C.; Jorge, M.S.; Nardi, A.E.; Machado, S.; Ianof, J.N.; et al. Index of alpha/theta ratio of the electroencephalogram: A new marker for Alzheimer’s disease. Front. Aging Neurosci. 2013, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Bousleiman, H.; Chaturvedi, M.; Gschwandtner, U.; Hatz, F.; Schindler, C.; Zimmermann, R.; Fuhr, P. P122. Alpha1/theta ratio from quantitative EEG (qEEG) as a reliable marker for mild cognitive impairment (MCI) in patients with Parkinson’s disease (PD). Clin. Neurophysiol. 2015, 126, e150–e151. [Google Scholar] [CrossRef]
- Schmiedek, F.; Hildebrandt, A.; Lövdén, M.; Wilhelm, O.; Lindenberger, U. Complex span versus updating tasks of working memory: The gap is not that deep. J. Exp. Psychol. Learn. Mem. Cogn. 2009, 35, 1089–1096. [Google Scholar] [CrossRef]
- Scharinger, C.; Soutschek, A.; Schubert, T.; Gerjets, P. Comparison of the Working Memory Load in N-Back and Working Memory Span Tasks by Means of EEG Frequency Band Power and P300 Amplitude. Front. Hum. Neurosci. 2017, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J.; Meier, B. The concurrent validity of the N -back task as a working memory measure. Memory 2010, 18, 394–412. [Google Scholar] [CrossRef]
- Lundqvist, D.; Flykt, A.; Öhman, A. The Karolinska Directed Emotional Faces—KDEF, CD ROM from Department of Clinical Neuroscience; Psychology Section, Karolinska Institutet: Solna, Sweden, 1998; ISBN 91-630-7164-9. [Google Scholar]
- Turner, M.L.; Engle, R.W. Is working memory capacity task dependent? J. Mem. Lang. 1989, 28, 127–154. [Google Scholar] [CrossRef]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef]
- Kim, H.; Luo, J.; Chu, S.; Cannard, C.; Hoffmann, S.; Miyakoshi, M. ICA’s bug: How ghost ICs emerge from effective rank deficiency caused by EEG electrode interpolation and incorrect re-referencing. Front. Sig. Proc. 2023, 3, 1064138. [Google Scholar] [CrossRef]
- JASP Team. JASP [Computer Software], Version 0.19.2; JASP Team: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Lee, M.D.; Wagenmakers, E.J. Bayesian Cognitive Modeling: A Practical Course; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Westfall, P.H.; Johnson, W.O.; Utts, J.M. A Bayesian perspective on the Bonferroni adjustment. Biometrika 1997, 84, 419–427. [Google Scholar] [CrossRef]
- Ebbinghaus, H. Memory: A Contribution to Experimental Psychology; Dover: Mineola, NY, USA, 1964. [Google Scholar]
- Chapman, S.B.; Aslan, S.; Spence, J.S.; Hart, J.J., Jr.; Bartz, E.K.; Didehbani, N.; Keebler, M.W.; Gardner, C.M.; Strain, J.F.; DeFina, L.F.; et al. Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cereb. Cortex 2015, 25, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Lampit, A.; Hallock, H.; Suo, C.; Naismith, S.L.; Valenzuela, M. Cognitive training-induced short-term functional and long-term structural plastic change is related to gains in global cognition in healthy older adults: A pilot study. Front. Aging Neurosci. 2015, 7, 14. [Google Scholar] [CrossRef]
- Lampit, A.; Hallock, H.; Moss, R.; Kwok, S.; Rosser, M.; Lukjanenko, M.; Kohn, A.; Naismith, S.; Brodaty, H.; Valenzuela, M. The Timecourse of Global Cognitive Gains from Supervised Computer-Assisted Cognitive Training: A Randomised, Active-Controlled Trial in Elderly with Multiple Dementia Risk Factors. J. Prev. Alzheimer’s Dis. 2014, 1, 33–39. [Google Scholar] [CrossRef]
- Kühn, S.; Schmiedek, F.; Noack, H.; Wenger, E.; Bodammer, N.C.; Lindenberger, U.; Lövden, M. The dynamics of change in striatal activity following updating training. Hum. Brain Mapp. 2013, 34, 1530–1541. [Google Scholar] [CrossRef]
- Clouter, A.; Shapiro, K.L.; Hanslmayr, S. Theta Phase Synchronization Is the Glue that Binds Human Associative Memory. Curr. Biol. 2017, 27, 3143–3148.e6. [Google Scholar] [CrossRef] [PubMed]
- Onton, J.; Delorme, A.; Makeig, S. Frontal midline EEG dynamics during working memory. NeuroImage 2005, 27, 341–356. [Google Scholar] [CrossRef] [PubMed]
- Sauseng, P.; Hoppe, J.; Klimesch, W.; Gerloff, C.; Hummel, F.C. Dissociation of sustained attention from central executive functions: Local activity and interregional connectivity in the theta range. Eur. J. Neurosci. 2007, 25, 587–593. [Google Scholar] [CrossRef]
- Foxe, J.J.; Snyder, A.C. The Role of Alpha-Band Brain Oscillations as a Sensory Suppression Mechanism during Selective Attention. Front. Psychol. 2011, 2, 154. [Google Scholar] [CrossRef] [PubMed]
- Payne, L.; Guillory, S.; Sekuler, R. Attention-modulated Alpha-band Oscillations Protect against Intrusion of Irrelevant Information. J. Cogn. Neurosci. 2013, 25, 1463–1476. [Google Scholar] [CrossRef]
- Gajewski, P.D.; Hanisch, E.; Falkenstein, M.; Thönes, S.; Wascher, E. What Does the n-Back Task Measure as We Get Older? Relations Between Working-Memory Measures and Other Cognitive Functions Across the Lifespan. Front. Psychol. 2018, 9, 2208. [Google Scholar] [CrossRef]
- Forsberg, A.; Fellman, D.; Laine, M.; Johnson, W.; Logie, R.H. Strategy mediation in working memory training in younger and older adults. Q. J. Exp. Psychol. 2020, 73, 1206–1226. [Google Scholar] [CrossRef] [PubMed]
- Von Bastian, C.C.; Belleville, S.; Udale, R.C.; Reinhartz, A.; Essounni, M.; Strobach, T. Mechanisms underlying training-induced cognitive change. Nat. Rev. Psychol. 2022, 1, 30–41. [Google Scholar] [CrossRef]
- Anrijs, S.; Mariën, I.; De Marez, L.; Ponnet, K. Excluded from essential internet services: Examining associations between digital exclusion, socio-economic resources and internet resources. Technol. Soc. 2023, 73, 102211. [Google Scholar] [CrossRef]
- Lumsden, J.; Edwards, E.A.; Lawrence, N.S.; Coyle, D.; Munafò, M.R. Gamification of Cognitive Assessment and Cognitive Training: A Systematic Review of Applications and Efficacy. JMIR Serious Games 2016, 4, e11. [Google Scholar] [CrossRef] [PubMed]
- Khaleghi, A.; Aghaei, Z.; Mahdavi, M.A. A Gamification Framework for Cognitive Assessment and Cognitive Training: Qualitative Study. JMIR Serious Games 2021, 9, e21900. [Google Scholar] [CrossRef]
- Barbazzeni, B.; Speck, O.; Düzel, E. Cognitive training, but not EEG-neurofeedback, improves working memory in healthy volunteers. Brain Commun. 2023, 5, fcad101. [Google Scholar] [CrossRef] [PubMed]
F | df | p | η2 | BF10 | |
---|---|---|---|---|---|
Frontal alpha | 4.13 | 3/48 | 0.011 | 0.205 | 4.25 |
Parietal alpha | 7.69 | 3/48 | <0.001 | 0.325 | 96.60 |
Frontal theta | 1.40 | 3/48 | 0.255 | 0.080 | 0.32 |
Parietal theta | 0.28 | 3/48 | 0.840 | 0.017 | 0.11 |
Frontal alpha/theta | 2.07 | 3/48 | 0.117 | 0.014 | 0.612 |
Parietal alpha/theta | 4.18 | 3/48 | 0.010 | 0.207 | 4.39 |
Electrode Pairs | F | df | p | BF10 |
---|---|---|---|---|
F3–P3 | 0.09 | 3/48 | 0.963 | 0.090 |
F3–P4 | 0.24 | 3/48 | 0.871 | 0.102 |
F4–P3 | 0.38 | 3/48 | 0.770 | 0.116 |
F4–P4 | 0.39 | 3/48 | 0.760 | 0.119 |
Fz–Pz | 0.37 | 3/48 | 0.778 | 0.116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juras, L.; Vranic, A.; Hromatko, I. Elusive Gains of Cognitive Training: Limited Effects on Neural Activity Across Sessions. Brain Sci. 2025, 15, 22. https://doi.org/10.3390/brainsci15010022
Juras L, Vranic A, Hromatko I. Elusive Gains of Cognitive Training: Limited Effects on Neural Activity Across Sessions. Brain Sciences. 2025; 15(1):22. https://doi.org/10.3390/brainsci15010022
Chicago/Turabian StyleJuras, Luka, Andrea Vranic, and Ivana Hromatko. 2025. "Elusive Gains of Cognitive Training: Limited Effects on Neural Activity Across Sessions" Brain Sciences 15, no. 1: 22. https://doi.org/10.3390/brainsci15010022
APA StyleJuras, L., Vranic, A., & Hromatko, I. (2025). Elusive Gains of Cognitive Training: Limited Effects on Neural Activity Across Sessions. Brain Sciences, 15(1), 22. https://doi.org/10.3390/brainsci15010022