mTBI Biological Biomarkers as Predictors of Postconcussion Syndrome—Review
Abstract
:1. Introduction
2. Epidemiology
3. Clinical Picture
- -
- 4—spontaneous eye opening,
- -
- 3—eye opening to verbal command,
- -
- 2—eye opening to pain,
- -
- 1—no eye opening.
- -
- 5—orientated,
- -
- 4—confused,
- -
- 3—inappropriate words,
- -
- 2—incomprehensible sounds,
- -
- 1—no verbal response.
- -
- 6—obeys command,
- -
- 5—localizes pain,
- -
- 4—withdraws from pain,
- -
- 3—flexion response to pain,
- -
- 2—extension response to pain,
- -
- 1—no motor response.
- -
- GCS score < 15 at 2 h after injury,
- -
- Suspected open or suppressed skull fracture,
- -
- Any sign of basal skull fracture, for example, hemotympanum, Battle’s sign, ‘raccoon’ eyes,
- -
- Vomiting ≥ 2 episodes,
- -
- Age ≥ 65 years.
- -
- Amnesia before impact ≥ 30 min,
- -
- Dangerous mechanism, for example, pedestrian struck by vehicle, occupant ejected from motor vehicle.
- Cognitive, which contains memory deficits, attention and concentration difficulties, speech difficulties, executive dysfunction, and fine motor difficulties.
- Psychological, including depression, anxiety, irritability and personal changes, fatigue, and derealization.
- Somatosensory and vestibulocochlear dysfunction, which involves headaches, nausea and vomiting, light and sound sensitivity, hyperalgesia, and tinnitus.
- Visual symptoms and oculomotor dysfunction, which involves light sensitivity, blurry vision, convergence difficulty, double vision, and Horner’s syndrome.
- Autonomic symptoms, including fluctuation of heart rate and blood pressure, abnormalities regarding sweating and pupils, temperature dysregulation, sexual dysfunction, sleep alterations, and poor sleep efficiency.
- -
- The vestibulocochlear system,
- -
- Autonomic dysfunction symptoms,
- -
- Brainstem and cortical assessment,
- -
- Neck dysfunction,
- -
- Cognitive function.
4. Diagnostic Criteria and Diagnosis
- -
- 0—when the symptom is not experienced at all,
- -
- 1—no longer a problem,
- -
- 2—mild problem,
- -
- 3—moderate problem,
- -
- 4—severe problem.
- Mechanism of injury—plausible concussion;
- Clinical signs—one or more of the following: loss of consciousness immediately after the injury, alteration of mental status immediately after the injury, partial or complete amnesia, or other acute neurological signs immediately after the trauma,
- Acute symptoms—≥2 new or worsened from the following:
- -
- Acute subjective alterations in mental status, for example, confusion, disorientation, daze;
- -
- Physical symptoms: headache, nausea, dizziness, vision disturbances, sensitivity to light and/or noise [39];
- -
- Cognitive symptoms: feeling slowed down, ‘mental fog’, concentration difficulties, memory problems;
- -
- Emotional symptoms, e.g., emotional lability or irritability.
- 4.
- Clinical examination and laboratory findings, —cognitive, balance, or oculomotor impairment or elevated blood biomarkers indicative of intracranial injury,
- 5.
- Neuroimaging—abnormalities found on CT or MRI,
- 6.
- Confounding factors not better accounted for—alcohol or drug intoxication, diseases, disabilities, or symptoms prior to the injury.
- -
- Loss of consciousness longer than 30 min,
- -
- GCS > 13 after 30 min,
- -
- Post-traumatic amnesia for longer than 24 h.
5. Therapeutic Options
6. Biomarkers in mTBI
6.1. Definition of Biomarker
6.2. Neuron Specific Enolase (NSE)
6.3. Glial Fibrillary Acidic Protein (GFAP)
6.4. Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1)
6.5. Serum Protein 100 B (s100B)
6.6. Tau Protein
7. Need for Prediction of Postconcussion Syndrome
7.1. S100b in PCS
7.2. Enolase in PCS
7.3. GFAP in PCS
7.4. UCH-L1 in PCS
7.5. Tau Protein in PCS
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Begaz, T.; Kyriacou, D.N.; Segal, J.; Bazarian, J.J. Serum Biochemical Markers for Post-Concussion Syndrome in Patients with Mild Traumatic Brain Injury. J. Neurotrauma 2006, 23, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the Global Incidence of Traumatic Brain Injury. J. Neurosurg. 2018, 130, 1080–1097. [Google Scholar] [CrossRef] [PubMed]
- Mavroudis, I.; Kazis, D.; Chowdhury, R.; Petridis, F.; Costa, V.; Balmus, I.-M.; Ciobica, A.; Luca, A.-C.; Radu, I.; Dobrin, R.P.; et al. Post-Concussion Syndrome and Chronic Traumatic Encephalopathy: Narrative Review on the Neuropathology, Neuroimaging and Fluid Biomarkers. Diagnostics 2022, 12, 740. [Google Scholar] [CrossRef] [PubMed]
- Diagnostic Criteria for Postconcussional Syndrome After Mild to Moder. Available online: https://archive.ph/qUuDK (accessed on 24 March 2024).
- Varriano, B.; Tomlinson, G.; Tarazi, A.; Wennberg, R.; Tator, C.; Tartaglia, M.C. Age, Gender and Mechanism of Injury Interactions in Post-Concussion Syndrome. Can. J. Neurol. Sci. 2018, 45, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, J.D.; Carroll, L.J.; Peloso, P.M.; Borg, J.; von Holst, H.; Holm, L.; Kraus, J.; Coronado, V.G. Incidence, Risk Factors and Prevention of Mild Traumatic Brain Injury: Results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med. 2004, 36, 28–60. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Chih, H.; Thorne, J.; Fitzgerald, M.; Cowen, G. A Retrospective Analysis of Concussion and Post-Concussional Syndrome Diagnoses in Western Australian Emergency Departments. Injury 2024, 55, 111333. [Google Scholar] [CrossRef] [PubMed]
- Maegele, M.; Lefering, R.; Sakowitz, O.; Kopp, M.A.; Schwab, J.M.; Steudel, W.-I.; Unterberg, A.; Hoffmann, R.; Uhl, E.; Marzi, I. The Incidence and Management of Moderate to Severe Head Injury. Dtsch. Arztebl. Int. 2019, 116, 167–173. [Google Scholar] [CrossRef]
- Lizzo, J.M.; Waseem, M. Brain Trauma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Anderson, J.F.I.; Jordan, A.S. Sex Predicts Post-Concussion Symptom Reporting, Independently of Fatigue and Subjective Sleep Disturbance, in Premorbidly Healthy Adults after Mild Traumatic Brain Injury. Neuropsychol. Rehabil. 2023, 33, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Picon, E.L.; Wardell, V.; Palombo, D.J.; Todd, R.M.; Aziz, B.; Bedi, S.; Silverberg, N.D. Factors Perpetuating Functional Cognitive Symptoms after Mild Traumatic Brain Injury. J. Clin. Exp. Neuropsychol. 2023, 45, 988–1002. [Google Scholar] [CrossRef]
- Pattinson, C.L.; Shahim, P.; Taylor, P.; Dunbar, K.; Guedes, V.A.; Motamedi, V.; Lai, C.; Devoto, C.; Peyer, J.; Roy, M.J.; et al. Elevated Tau in Military Personnel Relates to Chronic Symptoms Following Traumatic Brain Injury. J. Head. Trauma. Rehabil. 2020, 35, 66–73. [Google Scholar] [CrossRef]
- Broshek, D.K.; De Marco, A.P.; Freeman, J.R. A Review of Post-Concussion Syndrome and Psychological Factors Associated with Concussion. Brain Inj. 2015, 29, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, F.; Boucher, V.; Neveu, X.; Ouellet, V.; Archambault, P.; Berthelot, S.; Chauny, J.-M.; de Guise, E.; Émond, M.; Frenette, J.; et al. Post-Concussion Symptoms in Sports-Related Mild Traumatic Brain Injury Compared to Non-Sports-Related Mild Traumatic Brain Injury. Can. J. Emerg. Med. 2021, 23, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Mehrolhassani, N.; Movahedi, M.; Nazemi-Rafi, M.; Mirafzal, A. Persistence of Post-Concussion Symptoms in Patients with Mild Traumatic Brain Injury and No Psychiatric History in the Emergency Department. Brain Inj. 2020, 34, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Bedaso, A.; Geja, E.; Ayalew, M.; Oltaye, Z.; Duko, B. Post-Concussion Syndrome among Patients Experiencing Head Injury Attending Emergency Department of Hawassa University Comprehensive Specialized Hospital, Hawassa, Southern Ethiopia. J. Headache Pain. 2018, 19, 112. [Google Scholar] [CrossRef] [PubMed]
- Mihić, J.; Rotim, K.; Marcikić, M.; Smiljanić, D. Head Injury in Children. Acta Clin. Croat. 2011, 50, 539–548. [Google Scholar] [PubMed]
- Meehan, W.P.; Mannix, R. Pediatric Concussions in United States Emergency Departments in the Years 2002–2006. J. Pediatr. 2010, 157, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Takagi, M.; Babl, F.E.; Anderson, N.; Bressan, S.; Clarke, C.J.; Crichton, A.; Dalziel, K.; Davis, G.A.; Doyle, M.; Dunne, K.; et al. Protocol for a Prospective, Longitudinal, Cohort Study of Recovery Pathways, Acute Biomarkers and Cost for Children with Persistent Postconcussion Symptoms: The Take CARe Biomarkers Study. BMJ Open 2019, 9, e022098. [Google Scholar] [CrossRef] [PubMed]
- Lumba-Brown, A.; Yeates, K.O.; Sarmiento, K.; Breiding, M.J.; Haegerich, T.M.; Gioia, G.A.; Turner, M.; Benzel, E.C.; Suskauer, S.J.; Giza, C.C.; et al. Centers for Disease Control and Prevention Guideline on the Diagnosis and Management of Mild Traumatic Brain Injury Among Children. JAMA Pediatr. 2018, 172, e182853. [Google Scholar] [CrossRef]
- Glaser, J.; Vasquez, M.; Cardarelli, C.; Galvagno, S.; Stein, D.; Murthi, S.; Scalea, T. Through the Looking Glass: Early Non-Invasive Imaging in TBI Predicts the Need for Interventions. Trauma. Surg. Acute Care Open 2016, 1, e000019. [Google Scholar] [CrossRef]
- Stiell, I.G.; Wells, G.A.; Vandemheen, K.; Clement, C.; Lesiuk, H.; Laupacis, A.; McKnight, R.D.; Verbeek, R.; Brison, R.; Cass, D.; et al. The Canadian CT Head Rule for Patients with Minor Head Injury. Lancet 2001, 357, 1391–1396. [Google Scholar] [CrossRef]
- Romanelli, D.; Farrell, M.W. AVPU Scale. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Jain, S.; Iverson, L.M. Glasgow Coma Scale. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Yarlagadda, J.; Joshi, S.; Cerasale, M.T.; Rana, S.; Heidemann, D. The Applicability of New Orleans Criteria for Head Computed Tomography in Inpatient Falls with Injury. Neurohospitalist 2019, 9, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Yeh, P.-H.; Ollinger, J.M.; Morris, H.D.; Hood, M.N.; Ho, V.B.; Choi, K.H. Military-Related Mild Traumatic Brain Injury: Clinical Characteristics, Advanced Neuroimaging, and Molecular Mechanisms. Transl. Psychiatry 2023, 13, 289. [Google Scholar] [CrossRef] [PubMed]
- Sclafani, A.P.; Sclafani, M.S.; Long, S.; Losenegger, T.; Spielman, D.; Obayemi, A.; Cosiano, M.F.; Neuner, R.; Kacker, A.; Reeve, G.; et al. Injury Patterns in Pediatric Facial Fractures Unique to an Urban Environment. Facial Plast. Surg. 2021, 37, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Fridinger, S.; Stephenson, D. Post-Concussion Syndrome and Neurologic Complications. Curr. Pediatr. Rep. 2018, 6, 1–8. [Google Scholar] [CrossRef]
- Voormolen, D.C.; Cnossen, M.C.; Polinder, S.; von Steinbuechel, N.; Vos, P.E.; Haagsma, J.A. Divergent Classification Methods of Post-Concussion Syndrome after Mild Traumatic Brain Injury: Prevalence Rates, Risk Factors, and Functional Outcome. J. Neurotrauma 2018, 35, 1233–1241. [Google Scholar] [CrossRef]
- Fernandes, F.A.O.; de Sousa, R.J.A. Head Injury Predictors in Sports Trauma—A State-of-the-Art Review. Proc. Inst. Mech. Eng. H 2015, 229, 592–608. [Google Scholar] [CrossRef]
- Veliz, P.T.; Berryhill, M.E. Gender Differences in Adolescents’ Affective Symptoms and Behavioral Disorders After Mild Traumatic Brain Injury. J. Head. Trauma Rehabil. 2023, 38, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Almklov, E.; Afari, N.; Pittman, J.O.E. Symptoms of Major Depressive Disorder and Post-Traumatic Stress Disorder in Veterans with Mild Traumatic Brain Injury: A Network Analysis. PLoS ONE 2023, 18, e0283101. [Google Scholar] [CrossRef] [PubMed]
- Boake, C.; McCauley, S.R.; Levin, H.S.; Pedroza, C.; Contant, C.F.; Song, J.X.; Brown, S.A.; Goodman, H.; Brundage, S.I.; Diaz-Marchan, P.J. Diagnostic Criteria for Postconcussional Syndrome after Mild to Moderate Traumatic Brain Injury. J. Neuropsychiatry Clin. Neurosci. 2005, 17, 350–356. [Google Scholar] [CrossRef]
- World Health Organization. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines; World Health Organization: Geneva, Switzerland, 1992; ISBN 978-7-117-01957-6. [Google Scholar]
- Quinn, B.P. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Primary Care Version. Prim. Care Companion J. Clin. Psychiatry 1999, 1, 54–55. [Google Scholar] [CrossRef]
- Zeldovich, M.; Bockhop, F.; Covic, A.; Cunitz, K.; Polinder, S.; Haagsma, J.A.; von Steinbuechel, N. Reference Values for the Rivermead Post-Concussion Symptoms Questionnaire (RPQ) from General Population Samples in the United Kingdom, Italy, and The Netherlands. J. Clin. Med. 2022, 11, 4658. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.; Leigh, E.; Wade, D.; Fleminger, S. The Rivermead Post Concussion Symptoms Questionnaire. J. Neurol. 2006, 253, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, N.D.; Iverson, G.L.; ACRM Brain Injury Special Interest Group Mild TBI Task Force Members; Cogan, A.; Dams-O-Connor, K.; Delmonico, R.; Graf, M.J.P.; Iaccarino, M.A.; Kajankova, M.; Kamins, J.; et al. The American Congress of Rehabilitation Medicine Diagnostic Criteria for Mild Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2023, 104, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, N.D.; Iverson, G.L.; Arciniegas, D.B.; Bayley, M.T.; Bazarian, J.J.; Bell, K.R.; Broglio, S.P.; Cifu, D.; Davis, G.A.; Dvorak, J.; et al. Expert Panel Survey to Update the American Congress of Rehabilitation Medicine Definition of Mild Traumatic Brain Injury. Arch. Phys. Med. Rehabil. 2021, 102, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Laker, S.R. Epidemiology of Concussion and Mild Traumatic Brain Injury. PM R 2011, 3, S354–S358. [Google Scholar] [CrossRef] [PubMed]
- Permenter, C.M.; Fernández-de Thomas, R.J.; Sherman, A. l Postconcussive Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Evans, R.W.; Evans, R.I.; Sharp, M.J. The Physician Survey on the Post-Concussion and Whiplash Syndromes. Headache 1994, 34, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Kureshi, S.; Stowe, C.; Francis, J.; Djalilian, H. Circadian Therapy Interventions for Glymphatic Dysfunction in Concussions Injuries: A Narrative Review. Sci. Prog. 2023, 106, 00368504231189536. [Google Scholar] [CrossRef]
- Tracey, A.J.; Bateman, A.G.; Baez, S.E.; Covassin, T. Effectiveness of Interventions for the Improvement of Mental Health and Well-Being Post-Concussion: A Systematic Review. Brain Injury 2023, 37, 1135–1158. [Google Scholar] [CrossRef] [PubMed]
- Biggs, A.T.; Littlejohn, L.F.; Dainer, H.M. Alternative Uses of Hyperbaric Oxygen Therapy in Military Medicine: Current Positions and Future Directions. Mil. Med. 2022, 187, e40–e46. [Google Scholar] [CrossRef]
- Reddy, C.C.; Collins, M.; Lovell, M.; Kontos, A.P. Efficacy of Amantadine Treatment on Symptoms and Neurocognitive Performance among Adolescents Following Sports-Related Concussion. J. Head. Trauma Rehabil. 2013, 28, 260–265. [Google Scholar] [CrossRef]
- Oris, C.; Kahouadji, S.; Durif, J.; Bouvier, D.; Sapin, V. S100B, Actor and Biomarker of Mild Traumatic Brain Injury. Int. J. Mol. Sci. 2023, 24, 6602. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, A.; Colburn, W.; Degruttola, V.; Demets, D.; Downing, G.; Hoth, D.; Oates, J.; Peck, C.; Schooley, R.; Spilker, B.; et al. NIH Biomarkers Definitions Working GroupBiomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Mehta, T.; Fayyaz, M.; Kaur, H.; Raikwar, S.P.; Kempuraj, D.; Selvakumar, G.P.; Ahmed, M.E.; Thangavel, R.; Zaheer, S.; Iyer, S.; et al. Current Trends in Biomarkers for Traumatic Brain Injury. Open Access J. Neurol. Neurosurg. 2020, 12, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Pacheco, V.; Vargas-Medrano, J.; Tran, E.; Nicolas, M.; Price, D.; Patel, R.; Tonarelli, S.; Gadad, B.S. Prognosis and Diagnostic Biomarkers of Mild Traumatic Brain Injury: Current Status and Future Prospects. J. Alzheimers Dis. 2022, 86, 943–959. [Google Scholar] [CrossRef] [PubMed]
- Eierud, C.; Craddock, R.C.; Fletcher, S.; Aulakh, M.; King-Casas, B.; Kuehl, D.; LaConte, S.M. Neuroimaging after Mild Traumatic Brain Injury: Review and Meta-Analysis. Neuroimage Clin. 2014, 4, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Mortaheb, S.; Filippini, M.M.; Kaux, J.-F.; Annen, J.; Lejeune, N.; Martens, G.; Calderón, M.A.F.; Laureys, S.; Thibaut, A. Neurophysiological Biomarkers of Persistent Post-Concussive Symptoms: A Scoping Review. Front. Neurol. 2021, 12, 687197. [Google Scholar] [CrossRef] [PubMed]
- Neuron Specific Enolase—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/neuron-specific-enolase (accessed on 1 April 2024).
- Di Battista, A.P.; Rhind, S.G.; Baker, A.J. Application of Blood-Based Biomarkers in Human Mild Traumatic Brain Injury. Front. Neurol. 2013, 4, 46428. [Google Scholar] [CrossRef] [PubMed]
- Mercier, E.; Tardif, P.-A.; Cameron, P.A.; Émond, M.; Moore, L.; Mitra, B.; Ouellet, M.-C.; Frenette, J.; de Guise, E.; Le Sage, N. Prognostic Value of Neuron-Specific Enolase (NSE) for Prediction of Post-Concussion Symptoms Following a Mild Traumatic Brain Injury: A Systematic Review. Brain Inj. 2018, 32, 29–40. [Google Scholar] [CrossRef]
- Reeves, S.A.; Helman, L.J.; Allison, A.; Israel, M.A. Molecular Cloning and Primary Structure of Human Glial Fibrillary Acidic Protein. Proc. Natl. Acad. Sci. USA 1989, 86, 5178–5182. [Google Scholar] [CrossRef]
- Papa, L.; Brophy, G.M.; Alvarez, W.; Hirschl, R.; Cress, M.; Weber, K.; Giordano, P. Sex Differences in Time Course and Diagnostic Accuracy of GFAP and UCH-L1 in Trauma Patients with Mild Traumatic Brain Injury. Sci. Rep. 2023, 13, 11833. [Google Scholar] [CrossRef]
- Davidoff, M.S.; Middendorff, R.; Köfüncü, E.; Müller, D.; Jezek, D.; Holstein, A.F. Leydig Cells of the Human Testis Possess Astrocyte and Oligodendrocyte Marker Molecules. Acta Histochem. 2002, 104, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yang, J.; Hou, Y.; Shi, X.; Liu, K. Prediction of Clinical Progression in Nervous System Diseases: Plasma Glial Fibrillary Acidic Protein (GFAP). Eur. J. Med. Res. 2024, 29, 51. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Shin, K.Y.; Chang, K.-A. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells 2023, 12, 1309. [Google Scholar] [CrossRef] [PubMed]
- Bishop, P.; Rocca, D.; Henley, J.M. Ubiquitin C-Terminal Hydrolase L1 (UCH-L1): Structure, Distribution and Roles in Brain Function and Dysfunction. Biochem. J. 2016, 473, 2453–2462. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Arrastia, R.; Wang, K.K.W.; Papa, L.; Sorani, M.D.; Yue, J.K.; Puccio, A.M.; McMahon, P.J.; Inoue, T.; Yuh, E.L.; Lingsma, H.F.; et al. Acute Biomarkers of Traumatic Brain Injury: Relationship between Plasma Levels of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein. J. Neurotrauma 2014, 31, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.M.; Dhawan, S.; Obirieze, A.C.; Sarno, B.; Akers, J.; Heller, M.J.; Chen, C.C. Plasma Biomarker for Post-Concussive Syndrome: A Pilot Study Using an Alternating Current Electro-Kinetic Platform. Front. Neurol. 2020, 11, 685. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.P.; Hayes, R.L.; Richichi, R.; Beers, S.R.; Wang, K.K.W. Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and αII-Spectrin Breakdown Product 145 kDa Correlate with Outcome after Pediatric TBI. J. Neurotrauma 2012, 29, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Thelin, E.P.; Nelson, D.W.; Bellander, B.-M. A Review of the Clinical Utility of Serum S100B Protein Levels in the Assessment of Traumatic Brain Injury. Acta Neurochir. 2017, 159, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Michetti, F.; Corvino, V.; Geloso, M.C.; Lattanzi, W.; Bernardini, C.; Serpero, L.; Gazzolo, D. The S100B Protein in Biological Fluids: More than a Lifelong Biomarker of Brain Distress. J. Neurochem. 2012, 120, 644–659. [Google Scholar] [CrossRef]
- Babcock, L.; Byczkowski, T.; Wade, S.L.; Ho, M.; Bazarian, J.J. Inability of S100B to Predict Postconcussion Syndrome in Children Who Present to the Emergency Department with Mild Traumatic Brain Injury: A Brief Report. Pediatr. Emerg. Care 2013, 29, 458–461. [Google Scholar] [CrossRef]
- Kelmendi, F.M.; Morina, A.A.; Mekaj, A.Y.; Dragusha, S.; Ahmeti, F.; Alimehmeti, R.; Morina, Q.; Berisha, M.; Krasniqi, B.; Kerolli, B. Ability of S100B to Predict Post-Concussion Syndrome in Paediatric Patients Who Present to the Emergency Department with Mild Traumatic Brain Injury. Br. J. Neurosurg. 2023, 37, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Neve, R.L.; Harris, P.; Kosik, K.S.; Kurnit, D.M.; Donlon, T.A. Identification of cDNA Clones for the Human Microtubule-Associated Protein Tau and Chromosomal Localization of the Genes for Tau and Microtubule-Associated Protein 2. Brain Res. 1986, 387, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Liliang, P.-C.; Liang, C.-L.; Weng, H.-C.; Lu, K.; Wang, K.-W.; Chen, H.-J.; Chuang, J.-H. Tau Proteins in Serum Predict Outcome after Severe Traumatic Brain Injury. J. Surg. Res. 2010, 160, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Overeem, L.H.; Raffaelli, B.; Fleischmann, R.; Süße, M.; Vogelgesang, A.; Maceski, A.M.; Papadopoulou, A.; Ruprecht, K.; Su, W.; Koch, M.; et al. Serum Tau Protein Elevation in Migraine: A Cross-Sectional Case-Control Study. J. Headache Pain. 2023, 24, 130. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Lindsell, C.J.; Rosenberry, C.M.; Shaw, G.J.; Zemlan, F.P. Serum Cleaved Tau Does Not Predict Postconcussion Syndrome after Mild Traumatic Brain Injury. Am. J. Emerg. Med. 2008, 26, 763–768. [Google Scholar] [CrossRef] [PubMed]
- Langworth-Green, C.; Patel, S.; Jaunmuktane, Z.; Jabbari, E.; Morris, H.; Thom, M.; Lees, A.; Hardy, J.; Zandi, M.; Duff, K. Chronic Effects of Inflammation on Tauopathies. Lancet Neurol. 2023, 22, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, Y. Tau and Neuroinflammation in Alzheimer’s Disease: Interplay Mechanisms and Clinical Translation. J. Neuroinflammation 2023, 20, 165. [Google Scholar] [CrossRef] [PubMed]
- Mikolić, A.; Steyerberg, E.W.; Polinder, S.; Wilson, L.; Zeldovich, M.; von Steinbuechel, N.; Newcombe, V.F.J.; Menon, D.K.; van der Naalt, J.; Lingsma, H.F.; et al. Prognostic Models for Global Functional Outcome and Post-Concussion Symptoms Following Mild Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study. J. Neurotrauma 2023, 40, 1651–1670. [Google Scholar] [CrossRef]
- Ben Zvi, I.; Harel, O.S.; Douvdevani, A.; Weiss, P.; Cohen, C.; Ben Ari, E.; Gross, G.; Menndel, Y.; Felzensztein, D.; Schwartz, N.; et al. Quick Cell-Free DNA Testing for the Prediction of Postconcussion Syndrome: A Single-Center Prospective Pilot Trial. J. Neurosurg. 2022, 136, 1660–1666. [Google Scholar] [CrossRef]
- Studer, M.; Goeggel Simonetti, B.; Heinks, T.; Steinlin, M.; Leichtle, A.; Berger, S.; Joeris, A. Acute S100B in Serum Is Associated with Cognitive Symptoms and Memory Performance 4 Months after Paediatric Mild Traumatic Brain Injury. Brain Inj. 2015, 29, 1667–1673. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Zemlan, F.P.; Mookerjee, S.; Stigbrand, T. Serum S-100B and Cleaved-Tau Are Poor Predictors of Long-Term Outcome after Mild Traumatic Brain Injury. Brain Inj. 2006, 20, 759–765. [Google Scholar] [CrossRef] [PubMed]
- De Kruijk, J.R.; Leffers, P.; Menheere, P.P.C.A.; Meerhoff, S.; Rutten, J.; Twijnstra, A. Prediction of Post-Traumatic Complaints after Mild Traumatic Brain Injury: Early Symptoms and Biochemical Markers. J. Neurol. Neurosurg. Psychiatry 2002, 73, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Cervellin, G.; Benatti, M.; Carbucicchio, A.; Mattei, L.; Cerasti, D.; Aloe, R.; Lippi, G. Serum Levels of Protein S100B Predict Intracranial Lesions in Mild Head Injury. Clin. Biochem. 2012, 45, 408–411. [Google Scholar] [CrossRef]
- Pelinka, L.E.; Toegel, E.; Mauritz, W.; Redl, H. Serum S 100 B: A Marker of Brain Damage in Traumatic Brain Injury with and without Multiple Trauma. Shock 2003, 19, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Agrawal, M.; Babal, R.; Purohit, D.K. Biological Significance of Serum Biomarkers in Sports- Related Concussion Injury-A Systematic Review. Turk. Neurosurg. 2022, 32, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Raabe, A.; Grolms, C.; Seifert, V. Serum Markers of Brain Damage and Outcome Prediction in Patients after Severe Head Injury. Br. J. Neurosurg. 1999, 13, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Topolovec-Vranic, J.; Pollmann-Mudryj, M.-A.; Ouchterlony, D.; Klein, D.; Spence, J.; Romaschin, A.; Rhind, S.; Tien, H.C.; Baker, A.J. The Value of Serum Biomarkers in Prediction Models of Outcome after Mild Traumatic Brain Injury. J. Trauma. 2011, 71, S478–S486. [Google Scholar] [CrossRef] [PubMed]
- The Prognostic Value of Serum Neuron-Specific Enolase in Traumatic Brain Injury: Systematic Review and Meta-Analysis. PLoS ONE. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106680 (accessed on 8 May 2024).
- Chen, W.; Wang, G.; Yao, C.; Zhu, Z.; Chen, R.; Su, W.; Jiang, R. The Ratio of Serum Neuron-Specific Enolase Level to Admission Glasgow Coma Scale Score Is Associated with Diffuse Axonal Injury in Patients with Moderate to Severe Traumatic Brain Injury. Front. Neurol. 2022, 13, 887818. [Google Scholar] [CrossRef] [PubMed]
- Bagnato, S.; Andriolo, M.; Boccagni, C.; Lucca, L.F.; De Tanti, A.; Pistarini, C.; Barone, T.; Galardi, G. Reduced Neuron-Specific Enolase Levels in Chronic Severe Traumatic Brain Injury. J. Neurotrauma 2020, 37, 423–427. [Google Scholar] [CrossRef]
- Korley, F.K.; Jain, S.; Sun, X.; Puccio, A.M.; Yue, J.K.; Gardner, R.C.; Wang, K.K.W.; Okonkwo, D.O.; Yuh, E.L.; Mukherjee, P.; et al. Prognostic Value of Day-of-Injury Plasma GFAP and UCH-L1 Levels for Predicting Functional Recovery in the TRACK-TBI Cohort: An Observational Cohort Study. Lancet Neurol. 2022, 21, 803–813. [Google Scholar] [CrossRef]
- Papa, L.; Lewis, L.M.; Falk, J.L.; Zhang, Z.; Silvestri, S.; Giordano, P.; Brophy, G.M.; Demery, J.A.; Dixit, N.K.; Ferguson, I.; et al. Elevated Levels of Serum Glial Fibrillary Acidic Protein Breakdown Products in Mild and Moderate Traumatic Brain Injury Are Associated with Intracranial Lesions and Neurosurgical Intervention. Ann. Emerg. Med. 2012, 59, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Gao, G.; Feng, J.; Jin, Y.; Wang, C.; Mao, Q.; Jiang, J. Glial Fibrillary Acidic Protein as a Biomarker in Severe Traumatic Brain Injury Patients: A Prospective Cohort Study. Crit. Care 2015, 19, 362. [Google Scholar] [CrossRef]
- Gill, J.; Latour, L.; Diaz-Arrastia, R.; Motamedi, V.; Turtzo, C.; Shahim, P.; Mondello, S.; DeVoto, C.; Veras, E.; Hanlon, D.; et al. Glial Fibrillary Acidic Protein Elevations Relate to Neuroimaging Abnormalities after Mild TBI. Neurology 2018, 91, e1385–e1389. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, F.; Bahrami-Amiri, A.; Babahajian, A.; Shahsavari Nia, K.; Yousefifard, M. Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in Prediction of Computed Tomography Findings in Traumatic Brain Injury; a Meta-Analysis. Emergency 2018, 6, e62. [Google Scholar] [PubMed]
- Papa, L.; Akinyi, L.; Liu, M.C.; Pineda, J.A.; Tepas, J.J.; Oli, M.W.; Zheng, W.; Robinson, G.; Robicsek, S.A.; Gabrielli, A.; et al. Ubiquitin C-Terminal Hydrolase Is a Novel Biomarker in Humans for Severe Traumatic Brain Injury*. Crit. Care Med. 2010, 38, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Polat, Z.M.; Yucel, M.; Cikriklar, H.I.; Altındiş, M.; Yurumez, Y. Investigation of Early Diagnostic Value of Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase Blood Levels in Minor Head Trauma in Turkey. Clin. Lab. 2022, 68, 1643. [Google Scholar] [CrossRef] [PubMed]
- Papa, L.; Lewis, L.M.; Silvestri, S.; Falk, J.L.; Giordano, P.; Brophy, G.M.; Demery, J.A.; Liu, M.C.; Mo, J.; Akinyi, L.; et al. Serum Levels of Ubiquitin C-Terminal Hydrolase (UCH-L1) Distinguish Mild Traumatic Brain Injury (TBI) from Trauma Controls and Are Elevated in Mild and Moderate TBI Patients with Intracranial Lesions and Neurosurgical Intervention. J. Trauma Acute Care Surg. 2012, 72, 1335–1344. [Google Scholar] [CrossRef]
- Welch, R.D.; Ayaz, S.I.; Lewis, L.M.; Unden, J.; Chen, J.Y.; Mika, V.H.; Saville, B.; Tyndall, J.A.; Nash, M.; Buki, A.; et al. Ability of Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase-L1, and S100B To Differentiate Normal and Abnormal Head Computed Tomography Findings in Patients with Suspected Mild or Moderate Traumatic Brain Injury. J. Neurotrauma 2016, 33, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Hossain, I.; Blennow, K.; Posti, J.P.; Zetterberg, H. Tau as a Fluid Biomarker of Concussion and Neurodegeneration. Concussion 2022, 7, CNC98. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Han, L.; Guo, S.; Wang, L.; Xiong, Z.; Chen, Z.; Chen, W.; Liang, J. Serum τ Protein as a Potential Biomarker in the Assessment of Traumatic Brain Injury. Exp. Ther. Med. 2016, 11, 1147–1151. [Google Scholar] [CrossRef]
- Olivera, A.; Lejbman, N.; Jeromin, A.; French, L.M.; Kim, H.-S.; Cashion, A.; Mysliwiec, V.; Diaz-Arrastia, R.; Gill, J. Peripheral Total Tau in Military Personnel Who Sustain Traumatic Brain Injuries During Deployment. JAMA Neurol. 2015, 72, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Forouzan, A.; Motamed, H.; Delirrooyfard, A.; Zallaghi, S. Serum Cleaved Tau Protein and Clinical Outcome in Patients with Minor Head Trauma. Open Access Emerg. Med. 2020, 12, 7–12. [Google Scholar] [CrossRef] [PubMed]
SYMPTOMS | ICD-10 | DSM-IV |
---|---|---|
Headache | + | + |
Dizziness | + | + |
Fatigue | + | + |
Irritability | + | + |
Insomnia/sleep problems | + | + |
Concentration difficulties | + | − |
Memory difficulties | + | − |
Intolerance of stress, emotion, alcohol | + | − |
Affect changes, anxiety, depression | − | + |
Personality changes | − | + |
GFAP | NSE | S100 | UCH-L1 | TAU PROTEIN | |
---|---|---|---|---|---|
SPECIFICITY | 78.3% | 69.4% | 58% | 95% | 83.3% |
SENSITIVITY | 75.6% | 75% | 100% | 95% | 100% |
AUC | 0.93 | 0.72 | 0.8 | 0.83 | 0.95 |
CUT OFF | 1.35 | 6.45 | 0.38 | 0.21 | 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stępniewska, E.; Kałas, M.; Świderska, J.; Siemiński, M. mTBI Biological Biomarkers as Predictors of Postconcussion Syndrome—Review. Brain Sci. 2024, 14, 513. https://doi.org/10.3390/brainsci14050513
Stępniewska E, Kałas M, Świderska J, Siemiński M. mTBI Biological Biomarkers as Predictors of Postconcussion Syndrome—Review. Brain Sciences. 2024; 14(5):513. https://doi.org/10.3390/brainsci14050513
Chicago/Turabian StyleStępniewska, Ewelina, Maria Kałas, Justyna Świderska, and Mariusz Siemiński. 2024. "mTBI Biological Biomarkers as Predictors of Postconcussion Syndrome—Review" Brain Sciences 14, no. 5: 513. https://doi.org/10.3390/brainsci14050513
APA StyleStępniewska, E., Kałas, M., Świderska, J., & Siemiński, M. (2024). mTBI Biological Biomarkers as Predictors of Postconcussion Syndrome—Review. Brain Sciences, 14(5), 513. https://doi.org/10.3390/brainsci14050513