Rehabilitation of Severe Impairment in Motor Function after Stroke: Suggestions for Harnessing the Potentials of Mirror Neurons and the Mentalizing Systems to Stimulate Recovery
Abstract
:1. Introduction
2. The Mirror Neurons and the Mentalizing Systems
3. Suggestions for Harnessing the Potentials of Mirror Neurons and the Mentalizing Systems to Stimulate Recovery
3.1. Tasks Observation, Followed by Mental Practice
3.2. Observing the Task Performance of Familiar Faces and Mentalizing Very Familiar or Everyday Tasks
3.3. Mirror Therapy, Followed by Mental Practice
3.4. The Role of Music Therapy
3.5. High Repetition of Tasks Observation and Mental Practice
3.6. Combining Tasks Observation and Mental Practice with other Interventions
3.7. Environment for Rehabilitation Should Represent Real World Situation or Environment for the Patient
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krishnamurthi, R.V.; Moran, A.E.; Feigin, V.L.; Barker-Collo, S.; Norrving, B.; Mensah, G.A.; Taylor, S.; Naghavi, M.; Forouzanfar, M.H.; Nguyen, G.; et al. Stroke Prevalence, Mortality and Disability-Adjusted Life Years in Adults Aged 20–64 Years in 1990–2013: Data from the Global Burden of Disease 2013 Study. Neuroepidemiol 2015, 45, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S.; et al. Heart disease and stroke statistics—2013 update: A report from the American Heart Association. Circulation 2013, 127, e6–e245. [Google Scholar] [CrossRef] [PubMed]
- Rafsten, L.; Meirelles, C.; Danielsson, A.; Sunnerhagen, K.S. Impaired Motor Function in the Affected Arm Predicts Impaired Postural Balance After Stroke: A Cross Sectional Study. Front. Neurol. 2019, 10, 912. [Google Scholar] [CrossRef] [PubMed]
- Kamper, D.G.; Fischer, H.C.; Cruz, E.G.; Rymer, W.Z. Weakness is the primary contributor to finger impairment in chronic stroke. Arch. Phys. Med. Rehabil. 2006, 87, 1262. [Google Scholar] [CrossRef]
- World Health Organization. Primary Health Care: Report of the International Conference on Primary Health Care Alma Ata, USSR, 6–12 September 1978; World Health Organization: Geneva, Switzerland, 1978. [Google Scholar]
- Ietswaart, M.; Johnston, M.; Dijkerman, H.C.; Joice, S.; Scott, C.L.; MacWalter, R.S.; Hamilton, S.J. Mental practice with motor imagery in stroke recovery: Randomized controlled trial of efficacy. Brain 2011, 134, 1373–1386. [Google Scholar] [CrossRef]
- Lee, D.; Hwang, S. Motor imagery on upper extremity function for persons with stroke: A systematic review and meta-analysis. Phys. Ther. Rehabil. Sci. 2019, 8, 52–59. [Google Scholar] [CrossRef]
- Kim, K. Action observation for upper limb function after stroke: Evidence-based review of randomized controlled trials. J. Phys. Ther. Sci. 2015, 27, 3315–3317. [Google Scholar] [CrossRef]
- Borges, L.R.; Fernandes, A.B.; Melo, L.P.; Guerra, R.O.; Campos, T.F. Action observation for upper limb rehabilitation after stroke. Cochrane Database Syst. Rev. 2018, 10, CD011887. [Google Scholar] [CrossRef]
- Jeannerod, M. Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage 2001, 14, S103–S109. [Google Scholar] [CrossRef]
- Page, S.J.; Peters, H. Mental practice: Applying motor PRACTICE and neuroplasticity principles to increase upper extremity function. Stroke 2014, 45, 3454–3460. [Google Scholar] [CrossRef]
- Ito, M. Movement and thought: Identical control mechanisms by the cerebellum. Trends Neurosci. 1993, 16, 448–450. [Google Scholar] [CrossRef]
- Garrison, K.A.; Aziz-Zadeh, L.; Wong, S.W.; Liew, S.L.; Winstein, C.J. Modulating the motor system by action observation after stroke. Stroke 2013, 44, 2247–2253. [Google Scholar] [CrossRef] [PubMed]
- Garrison, K.A.; Winstein, C.J.; Aziz-Zadeh, L. The mirror neuron system: A neural substrate for methods in stroke rehabilitation. Neurorehabil. Neural Repair 2010, 24, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Leisman, G.; Moustafa, A.A.; Shafir, T. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function. Front. Public Health 2016, 4, 94. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Kashyap, R.; Abualait, T.; Chen, S.-H.A.; Yoo, W.-K.; Bashir, S. The Role of Primary Motor Cortex: More than Movement Execution. J. Motor Behaviour. 2020, 53, 258–274. [Google Scholar] [CrossRef]
- Braun, S.; Kleynen, M.; Heel, T.; Kruithof, N.; Wade, D.; Beurskens, A. The effects of mental practice in neurological rehabilitation; a systematic review and meta-analysis. Front. Hum. Neurosci. 2013, 7, 390. [Google Scholar] [CrossRef]
- Stockley, R.C.; Jarvis, K.; Boland, P.; Clegg, A.J. Systematic Review and Meta-Analysis of the Effectiveness of Mental Practice for the Upper Limb after Stroke: Imagined or Real Benefit? Arch. Phys. Med. Rehabil. 2021, 102, 1011–1027. [Google Scholar] [CrossRef]
- Geiger, A.; Bente, G.; Lammers, S.; Tepest, R.; Roth, D.; Bzdok, D.; Vogeley, K. Distinct functional roles of the mirror neuron system and the mentalizing system. NeuroImage 2019, 202, 116102. [Google Scholar] [CrossRef]
- Dushanova, J.; Donoghue, J. Neurons in primary motor cortex engaged during action observation. Eur. J. Neurosci. 2010, 31, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Gazzola, V.; Keysers, C. The observation and execution of actions share motor and somatosensory voxels in all tested subjects: Single-subject analyses of unsmoothed fMRI data. Cereb. Cortex 2009, 19, 1239–1255. [Google Scholar] [CrossRef] [PubMed]
- Kilner, J.M.; Lemon, R.N. What we know currently about mirror neurons. Curr. Biol. 2013, 23, R1057–R1062. [Google Scholar] [CrossRef] [PubMed]
- Iacoboni, M. Neural mechanisms of imitation. Curr. Opin. Neurobiol. 2005, 15, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Iacoboni, M.; Woods, R.P.; Brass, M.; Bekkering, H.; Mazziotta, J.C.; Rizzolatti, G. Cortical mechanism of human imitation. Science 1999, 286, 2526–2528. [Google Scholar] [CrossRef]
- Hurley, S. The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behav. Brain Sci. 2008, 31, 1–22. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Fogassi, L.; Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2001, 2, 661–670. [Google Scholar] [CrossRef]
- Umiltà, M.A.; Kohler, E.; Gallese, V.; Fogassi, L.; Fadiga, L.; Keysers, C.; Rizzolatti, G. I know what you are doing. a neurophysiological study. Neuron 2001, 19, 155–165. [Google Scholar] [CrossRef]
- Bonini, L. The Extended Mirror Neuron Network: Anatomy, Origin, and Functions. Neuroscientist 2017, 23, 56–67. [Google Scholar] [CrossRef]
- Spunt, R.P.; Lieberman, M.D. The busy social brain: Evidence for automaticity and control in the neural systems supporting social cognition and action understanding. Psychol. Sci. 2013, 24, 80–86. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Molnar-Szakacs, I.; Zaidel, E.; Iacoboni, M. rTMS to the right inferior parietal lobule disrupts self-other discrimination. Soc. Cogn. Affect Neurosci. 2006, 1, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Van Overwalle, F.; Baetens, K. Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. Neuroimage 2009, 48, 564–584. [Google Scholar] [CrossRef] [PubMed]
- Amodio, D.M.; Frith, C.D. Meeting of minds: The medial frontal cortex and social cognition. Nat. Rev. Neurosci. 2006, 7, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Frith, U.; Frith, C.D. Development and neurophysiology of mentalizing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 459–473. [Google Scholar] [CrossRef] [PubMed]
- David, N.; Cohen, M.X.; Newen, A.; Bewernick, B.H.; Shah, N.J.; Fink, G.R.; Vogeley, K. The extrastriate cortex distinguishes between the consequences of one’s own and others’ behavior. Neuroimage 2007, 36, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Nahab, F.B.; Kundu, P.; Gallea, C.; Kakareka, J.; Pursley, R.; Pohida, T.; Hallett, M. The neural processes underlying self-agency. Cereb. Cortex 2011, 21, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Yomogida, Y.; Sugiura, M.; Sassa, Y.; Wakusawa, K.; Sekiguchi, A.; Fukushima, A.; Kawashima, R. The neural basis of agency: An fMRI study. Neuroimage 2010, 50, 198–207. [Google Scholar] [CrossRef]
- Lemogne, C.; Gorwood, P.; Bergouignan, L.; Pe’lissolo, A.; Lehericy, S.; Fossati, P. Negative affectivity, self-referential processing and the cortical midline structures. Soc. Cogn. Affect Neurosci. 2011, 6, 426–433. [Google Scholar] [CrossRef]
- Schilbach, L.; Eickhoff, S.B.; Rotarska-Jagiela, A.; Fink, G.R.; Vogeley, K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious Cogn. 2008, 17, 457–467. [Google Scholar] [CrossRef]
- Calvo-Merino, B.; Glaser, D.E.; Grèzes, J.; Passingham, R.E.; Haggard, P. Action observation and acquired motor skills: An FMRI study with expert dancers. Cereb. Cortex 2005, 15, 1243–1249. [Google Scholar] [CrossRef]
- Johansson, B.B. Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol. Scand. 2011, 123, 147–159. [Google Scholar] [CrossRef]
- Cowles, T.; Clark, A.; Mares, K.; Peryer, G.; Stuck, R.; Pomeroy, V. Observation-to-imitate plus practice could add little to physical therapy benefits within 31 days of stroke: Translational randomized controlled trial. Neurorehabil. Neural Repair 2012, 27, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zeng, M.; Shen, F.; Cui, Y.; Zhu, M.; Gu, X.; Sun, Y. Effects of action observation therapy on upper extremity function, daily activities and motion evoked potential in cerebral infarction patients. Medicine 2017, 96, 42. [Google Scholar] [CrossRef] [PubMed]
- Pollock, A.; Farmer, S.E.; Brady, M.C.; Langhorne, P.; Mead, G.E.; Mehrholz, J.; van Wijck, F. Interventions for improving upper limb function after stroke. Cochrane Database Syst. Rev. 2014, 2014, CD010820. [Google Scholar] [CrossRef] [PubMed]
- Buccino, G. Action observation treatment: A novel tool in neurorehabilitation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130185. [Google Scholar] [CrossRef] [PubMed]
- Debarnot, U.; Sperduti, M.; Di Rienzo, F.; Guillot, A. Experts bodies, experts minds: How physical and mental training shape the brain. Front. Hum. Neurosci 2014, 8, 280, Erratum in Front. Hum. Neurosci. 2014, 8, 17. [Google Scholar] [CrossRef]
- Cha, Y.J.; Yoo, E.Y.; Jung, M.Y.; Park, S.H.; Park, J.H.; Lee, J. Effects of mental practice with action observation training on occupational performance after stroke. J. Stroke Cerebrovasc. Dis. 2015, 24, 1405–1413. [Google Scholar] [CrossRef]
- Emerson, J.R.; Binks, J.A.; Scott, M.W.; Kenny, R.P.W.; Eaves, D.L. Combined action observation and motor imagery therapy: A novel method for post-stroke motor rehabilitation. AIMS Neurosci. 2018, 5, 236–252. [Google Scholar] [CrossRef]
- Liew, S.L.; Han, S.; Aziz-Zadeh, L. Familiarity modulates mirror neuron and mentalizing regions during intention understanding. Hum. Brain Mapp. 2011, 32, 1986–1997. [Google Scholar] [CrossRef]
- Frith, C.D.; Frith, U. The neural basis of mentalizing. Neuron 2006, 50, 531–534. [Google Scholar] [CrossRef]
- Barclay, R.E.; Stevenson, T.J.; Poluha, W.; Semenko, B.; Schubert, J. Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst. Rev. 2020, 5, CD005950. [Google Scholar] [CrossRef]
- Ramachandran, V.S. Phantom limbs, neglect syndromes, repressed memory, and Freudian psychology. Int. Rev. Neurobiol. 1994, 37, 291–333. [Google Scholar]
- Ramachandran, V.S.; Rogers-Ramachandran, D.; Cobb, S. Touching the phantom limb. Nature 1995, 377, 489–490. [Google Scholar] [CrossRef]
- Deconinck, F.J.; Smorenburg, A.R.; Benham, A.; Ledebt, A.; Feltham, M.G.; Savelsbergh, G.J. Reflections on mirror therapy: A systematic review of the effect of mirror visual feedback on the brain. Neurorehabil. Neural Repair 2015, 29, 349–361. [Google Scholar] [CrossRef]
- Thieme, H.; Morkisch, N.; Mehrholz, J.; Pohl, M.; Behrens, J.; Borgetto, B.; Dohle, C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst. Rev. 2018, 7, CD008449. [Google Scholar] [CrossRef]
- Ramachandran, V.S.; Altschuler, E.L. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 2009, 132, 1693–1710. [Google Scholar] [CrossRef]
- Kohler, E.; Keysers, C.; Umilta, M.A.; Fogassi, L.; Gallese, V.; Rizzolatti, G. Hearing sounds, understanding actions: Action representation in mirror neurons. Science 2002, 6, 846–848. [Google Scholar] [CrossRef]
- Haslinger, B.; Erhard, P.; Altenmuller, E.; Schroeder, U.; Boecker, H.; Ceballos–Baumann, A.O. Transmodal sensorimotor networks during action observation in professional pianists. J. Cogn. Neurosci. 2005, 17, 282–293. [Google Scholar] [CrossRef]
- Bangert, M.; Peschel, T.; Schlaug, G.; Rotte, M.; Drescher, D.; Hinrichs, H.; Heinze, H.J.; Altenmüller, E. Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction. Neuroimage 2006, 30, 917–926. [Google Scholar] [CrossRef]
- Molnar-Szakacs, I.; Overy, K. Music and mirror neurons: From motion to ‘e’motion. Soc. Cogn. Affect Neurosci. 2006, 1, 235–241. [Google Scholar] [CrossRef]
- Abdullahi, A. Is time spent using constraint induced movement therapy an appropriate measure of dose? A critical literature review. Int. J. Ther. Rehabil. 2014, 21, 140–146. [Google Scholar] [CrossRef]
- Birkenmeier, R.L.; Prager, E.M.; Lang, C.E. Translating animal doses of task-specific training to people with chronic stroke in 1-hour therapy sessions: A proof-of-concept study. Neurorehabil. Neural Repair 2010, 24, 620–635. [Google Scholar] [CrossRef]
- Hung, C.S.; Hsieh, Y.W.; Wu, C.Y.; Chen, Y.J.; Lin, K.C.; Chen, C.L.; Yao, K.G.; Liu, C.T.; Horng, Y.S. Hybrid Rehabilitation Therapies on Upper-Limb Function and Goal Attainment in Chronic Stroke. OTJR 2019, 39, 116–123. [Google Scholar] [CrossRef]
- Sabo, B.; Abdullahi, A.; Badaru, U.M.; Saeys, W.; Truijen, S. Predictors of high dose of massed practice following stroke. Trans. Neurosci. 2022, 13, 181–190. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullahi, A.; Wong, T.W.L.; Ng, S.S.M. Rehabilitation of Severe Impairment in Motor Function after Stroke: Suggestions for Harnessing the Potentials of Mirror Neurons and the Mentalizing Systems to Stimulate Recovery. Brain Sci. 2022, 12, 1311. https://doi.org/10.3390/brainsci12101311
Abdullahi A, Wong TWL, Ng SSM. Rehabilitation of Severe Impairment in Motor Function after Stroke: Suggestions for Harnessing the Potentials of Mirror Neurons and the Mentalizing Systems to Stimulate Recovery. Brain Sciences. 2022; 12(10):1311. https://doi.org/10.3390/brainsci12101311
Chicago/Turabian StyleAbdullahi, Auwal, Thomson W. L. Wong, and Shamay S. M. Ng. 2022. "Rehabilitation of Severe Impairment in Motor Function after Stroke: Suggestions for Harnessing the Potentials of Mirror Neurons and the Mentalizing Systems to Stimulate Recovery" Brain Sciences 12, no. 10: 1311. https://doi.org/10.3390/brainsci12101311
APA StyleAbdullahi, A., Wong, T. W. L., & Ng, S. S. M. (2022). Rehabilitation of Severe Impairment in Motor Function after Stroke: Suggestions for Harnessing the Potentials of Mirror Neurons and the Mentalizing Systems to Stimulate Recovery. Brain Sciences, 12(10), 1311. https://doi.org/10.3390/brainsci12101311