Brain Activation Changes While Walking in Adults with and without Neurological Disease: Systematic Review and Meta-Analysis of Functional Near-Infrared Spectroscopy Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection Criteria
2.2. Search Strategy
2.3. Data Extraction
2.4. Quantitative Data Synthesis
2.5. Study Quality Assessment
3. Results
3.1. Study Selection
3.2. Basic Characteristics of Included Studies
3.3. Meta-Analysis
3.4. Study Quality Assessment
4. Discussion
4.1. Clinical Implications
4.2. Other Implications of fNIRS
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Search Terms Used for Each Database: | |
Database | Search Terms |
PubMed | ((((((“dual”) AND “task” OR “motor skill” [Mesh] OR “motor skill”))) AND ((“gait” [Mesh] OR “gait” OR “locomotion” [Mesh] OR “locomotion” OR “walking” [Mesh] OR “walking” OR “ambulation” [Mesh] OR “ambulation”))) AND (“adults”)) AND ((“neuroimaging” [Mesh] OR “neuroimaging” OR “fNIRS” OR “functional near infra *”)) Species—Humans, Language—English. |
Cumulative Index of Nursing and Allied Health | ((“dual task”) AND (“walking” OR “gait” OR “locomotion” OR “ambulation”) AND (“adults”) AND (“neuroimaging” OR “fNIRS” OR “functional near infra *”)))Limiters: English language; Human, Journal article |
Web of Science | ((TS = ((“dual task”) AND (“walking” OR “gait” OR “locomotion” OR “ambulation”) AND (“adults”) AND (“neuroimaging” OR “fNIRS” OR “functional near infra *”)))) AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article)Timespan: All years. Indexes: SCI-EXPANDED. |
PsycINFO | ((((((“dual”) AND “task” OR “motor skill” [Mesh] OR “motor skill”))) AND ((“gait” [Mesh] OR “gait” OR “locomotion” [Mesh] OR “locomotion” OR “walking” [Mesh] OR “walking” OR “ambulation” [Mesh] OR “ambulation”))) AND (“adults”)) AND ((“neuroimaging” [Mesh] OR “neuroimaging” OR “fNIRS” OR “functional near infra *”))Age: 18 yr & older; Language: English; Record type: Journal article; Population: Humans. |
Scopus | ( ( ( ( ( ( “dual” ) AND “task” OR “motor skill” [mesh] OR “motor skill” ) ) ) AND ( ( “gait” [mesh] OR “gait” OR “locomotion” [mesh] OR “locomotion” OR “walking” [mesh] OR “walking” OR “ambulation” [mesh] OR “ambulation” ) ) ) AND ( “adults” ) ) AND ( ( “neuroimaging” [mesh] OR “neuroimaging” OR “fNIRS” OR “functional near infra *” ) ) AND ( LIMIT-TO ( DOCTYPE, “ar” ) ) AND ( LIMIT-TO ( LANGUAGE, “English” ) ) AND ( LIMIT-TO ( SRCTYPE, “j” ) )Document type: Journal article; Language: English |
Note: * represents wild card. |
Appendix B
Study ID. | Author | Treadmill or Overground Walking? | Prioritization of Dual Task? | Additional Noise Processing? |
1 | Beurskens 2014 [41] | Treadmill | No | Yes |
2 | Chen 2017 [57] | Overground | Pay equal attention | Yes |
3 | Fraser 2016 [59] | Treadmill | Pay equal attention | NR |
4 | George 2019 [60] | Overground | Pay equal attention | NR |
5 | Holtzer 2011 [35] | Overground | Pay equal attention | Yes |
6 | Holtzer 2016 [36] | Overground | Pay equal attention | Yes |
7 | Holtzer 2016 [37] | Overground | Pay equal attention | Yes |
8 | Holtzer 2017 [34] | Overground | Pay equal attention | Yes |
9 | Holtzer 2018 [33] | Overground | Pay equal attention | Yes |
10 | Holtzer 2019 [31] | Overground | Pay equal attention | Yes |
11 | Holtzer 2019 [32] | Overground | Pay equal attention | Yes |
12 | Lin 2016 [38] | Overground | No | Yes |
13 | Lu 2015 [40] | Overground | Yes | Yes |
14 | Lucas 2019 [42] | Overground | Pay equal attention | Yes |
15 | Meester 2014 [45] | Treadmill | No | NR |
16 | Metzger 2017 [46] | Treadmill | No | NR |
17 | Mirelman 2014 [48] | Overground | No | Yes |
18 | Mirelman 2017 [47] | Overground | No | Yes |
19 | Osofyundiya 2016 [51] | Overground | Pay equal attention | NR |
20 | Stuart 2018 [54] | Treadmill | No | Yes |
21 | Verghese 2016 [55] | Overground | Pay equal attention | Yes |
22 | Wagshul 2019 [56] | Overground | Pay equal attention | Yes |
23 | Al-Yahya 2019 [29] | Treadmill | No | Yes |
24 | Maidan 2016 [44] | Overground | No | Yes |
25 | Maidan 2018 [43] | Treadmill | No | Yes |
26 | Nieuwhof 2016 [50] | Overground | NR | NR |
27 | Al-Yahya 2016 [30] | Treadmill | No | Yes |
28 | Chatterjee 2019 [63] | Overground | No | NR |
29 | Hermand 2019 [61] | Overground | Pay equal attention | Yes |
30 | Liu 2018 [39] | Overground | No | Yes |
31 | Mori 2017 [49] | Overground | No | NR |
32 | Chaparro 2017 [52] | Treadmill | No | Yes |
33 | Hernandez 2016 [62] | Overground | No | Yes |
34 | Saleh 2018 [53] | Overground | Pay equal attention | Yes |
35 | Doi 2013 [58] | Overground | No | NR |
Note: NR = Not reported. |
References
- Hamacher, D.; Herold, F.; Wiegel, P.; Hamacher, D.; Schega, L. Brain Activity during Walking: A Systematic Review. Neurosci. Biobehav. Rev. 2015, 57, 310–327. [Google Scholar] [CrossRef] [PubMed]
- Caetano, M.J.D.; Menant, J.C.; Schoene, D.; Pelicioni, P.H.S.; Sturnieks, D.L.; Lord, S.R. Sensorimotor and Cognitive Predictors of Impaired Gait Adaptability in Older People. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 72, glw171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero-Odasso, M.; Verghese, J.; Beauchet, O.; Hausdorff, J.M. Gait and Cognition: A Complementary Approach to Understanding Brain Function and the Risk of Falling. J. Am. Geriatr. Soc. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtzer, R.; Epstein, N.; Mahoney, J.R.; Izzetoglu, M.; Blumen, H.M. Neuroimaging of Mobility in Aging: A Targeted Review. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 1375–1388. [Google Scholar] [CrossRef]
- Cutini, S.; Moro, S.B.; Bisconti, S. Functional near Infrared Optical Imaging in Cognitive Neuroscience: An Introductory Review. J. Near Infrared Spectrosc. 2012, 20, 75–92. [Google Scholar] [CrossRef]
- Cutini, S.; Brigadoi, S. Unleashing the Future Potential of Functional Near-Infrared Spectroscopy in Brain Sciences. J. Neurosci. Methods 2014, 232, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Bunce, S.C.; Izzetoglu, M.; Izzetoglu, K.; Onaral, B.; Pourrezaei, K. Functional Near-Infrared Spectroscopy. IEEE Eng. Med. Biol. Mag. 2006, 25, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Saliba, J.; Bortfeld, H.; Levitin, D.J.; Oghalai, J.S. Functional Near-Infrared Spectroscopy for Neuroimaging in Cochlear Implant Recipients. Hear. Res. 2016, 338, 64–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd-Fox, S.; Blasi, A.; Elwell, C.E. Illuminating the Developing Brain: The Past, Present and Future of Functional near Infrared Spectroscopy. Neurosci. Biobehav. Rev. 2010, 34, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Smith, M. Shedding Light on the Adult Brain: A Review of the Clinical Applications of near-Infrared Spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4452–4469. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.; Sebastianelli, W.; Slobounov, S. EEG and Postural Correlates of Mild Traumatic Brain Injury in Athletes. Neurosci. Lett. 2005, 377, 158–163. [Google Scholar] [CrossRef]
- Maki, A.; Yamashita, Y.; Ito, Y.; Watanabe, E.; Mayanagi, Y.; Koizumi, H. Spatial and Temporal Analysis of Human Motor Activity Using Noninvasive NIR Topography. Med. Phys. 1995, 22, 1997–2005. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Funahashi, S. Toward an Understanding of the Neural Mechanisms Underlying Dual-Task Performance: Contribution of Comparative Approaches Using Animal Models. Neurosci. Biobehav. Rev. 2018, 84, 12–28. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. Exploring the Central Executive. Q. J. Exp. Psychol. Sect. A Hum. Exp. Psychol. 1996. [Google Scholar] [CrossRef]
- Just, M.A.; Carpenter, P.A. A Capacity Theory of Comprehension: Individual Differences in Working Memory. Psychol. Rev. 1992. [Google Scholar] [CrossRef] [PubMed]
- Holtzer, R.; Wang, C.; Verghese, J. Performance Variance on Walking While Talking Tasks: Theory, Findings, and Clinical Implications. Age 2014, 36, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtzer, R.; Wang, C.; Verghese, J. The Relationship between Attention and Gait in Aging: Facts and Fallacies. Motor Control 2012, 16, 64–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’esposito, M.; Detre, J.A.; Alsop, D.C.; Shin, R.K.; Scott, A.; Grossman, M. The Neural Basis of the Central Executive System of Working Memory. Nature 1995. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Quaresima, V. A Brief Review on the History of Human Functional Near-Infrared Spectroscopy (FNIRS) Development and Fields of Application. Neuroimage 2012, 63, 921–935. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.A.; Mannan, M.M.N.; Jeong, M.Y. Cortical Signal Analysis and Advances in Functional Near-Infrared Spectroscopy Signal: A Review. Front. Hum. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Orihuela-Espina, F.; Leff, D.R.; James, D.R.C.; Darzi, A.W.; Yang, G.Z. Quality Control and Assurance in Functional near Infrared Spectroscopy (FNIRS) Experimentation. Phys. Med. Biol. 2010. [Google Scholar] [CrossRef] [PubMed]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Thiers, A.; Hamacher, D.; Schega, L. Functional Near-Infrared Spectroscopy in Movement Science: A Systematic Review on Cortical Activity in Postural and Walking Tasks. Neurophotonics 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitorio, R.; Stuart, S.; Rochester, L.; Alcock, L.; Pantall, A. FNIRS Response during Walking—Artefact or Cortical Activity? A Systematic Review. Neurosci. Biobehav. Rev. 2017, 83, 160–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelicioni, P.H.S.S.; Tijsma, M.; Lord, S.R.; Menant, J. Prefrontal Cortical Activation Measured by FNIRS during Walking: Effects of Age, Disease and Secondary Task. PeerJ 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Udina, C.; Avtzi, S.; Durduran, T.; Holtzer, R.; Rosso, A.L.; Castellano-Tejedor, C.; Perez, L.M.; Soto-Bagaria, L.; Inzitari, M. Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review. Front. Aging Neurosci. 2020. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberatî, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Group, P.-P. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Littell, J.H.; Corcoran, J.; Pillai, V.K. Systematic Reviews and Meta-Analysis; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Allison, J.J. Quality Assessment Tools. Med. Care 2003. [Google Scholar] [CrossRef] [PubMed]
- Al-Yahya, E.; Mahmoud, W.; Meester, D.; Esser, P.; Dawes, H. Neural Substrates of Cognitive Motor Interference during Walking; Peripheral and Central Mechanisms. Front. Hum. Neurosci. 2019, 12. [Google Scholar] [CrossRef] [PubMed]
- Al-Yahya, E.; Johansen-Berg, H.; Kischka, U.; Zarei, M.; Cockburn, J.; Dawes, H. Prefrontal Cortex Activation While Walking Under Dual-Task Conditions in Stroke: A Multimodal Imaging Study. Neurorehabil. Neural Repair 2016, 30, 591–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtzer, R.; Izzetoglu, M.; Chen, M.; Wang, C. Distinct FNIRS-Derived HbO2 Trajectories during the Course and over Repeated Walking Trials under Single-and Dual-Task Conditions: Implications for Within Session Learning and Prefrontal Cortex Efficiency in Older Adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 1076–1083. [Google Scholar] [CrossRef]
- Holtzer, R.; Kraut, R.; Izzetoglu, M.; Ye, K. The Effect of Fear of Falling on Prefrontal Cortex Activation and Efficiency during Walking in Older Adults. Geroscience 2019, 41, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Holtzer, R.; George, C.J.; Izzetoglu, M.; Wang, C. The Effect of Diabetes on Prefrontal Cortex Activation Patterns during Active Walking in Older Adults. Brain Cogn. 2018, 125, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Holtzer, R.; Schoen, C.; Demetriou, E.; Mahoney, J.R.; Izzetoglu, M.; Wang, C.; Verghese, J. Stress and Gender Effects on Prefrontal Cortex Oxygenation Levels Assessed during Single and Dual-Task Walking Conditions. Eur. J. Neurosci. 2017, 45, 660–670. [Google Scholar] [CrossRef]
- Holtzer, R.; Mahoney, J.R.; Izzetoglu, M.; Izzetoglu, K.; Onaral, B.; Verghese, J. FNIRS Study of Walking and Walking While Talking in Young and Old Individuals. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2011, 66, 879–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtzer, R.; Verghese, J.; Allali, G.; Izzetoglu, M.; Wang, C.; Mahoney, J.R. Neurological Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis. Brain Topogr. 2016, 29, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Holtzer, R.; Yuan, J.; Verghese, J.; Mahoney, J.R.; Izzetoglu, M.; Wang, C. Interactions of Subjective and Objective Measures of Fatigue Defined in the Context of Brain Control of Locomotion. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 72, 417–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, M.-I.B.; Lin, K.-H. Walking While Performing Working Memory Tasks Changes the Prefrontal Cortex Hemodynamic Activations and Gait Kinematics. Front. Behav. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-C.C.; Yang, Y.-R.R.; Tsai, Y.-A.A.; Wang, R.-Y.Y.; Lu, C.-F.F. Brain Activation and Gait Alteration during Cognitive and Motor Dual Task Walking in Stroke-A Functional Near-Infrared Spectroscopy Study. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.F.; Liu, Y.C.; Yang, Y.R.; Wu, Y.T.; Wang, R.Y. Maintaining Gait Performance by Cortical Activation during Dual-Task Interference: A Functional near-Infrared Spectroscopy Study. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beurskens, R.; Helmich, I.; Rein, R.; Bock, O. Age-Related Changes in Prefrontal Activity during Walking in Dual-Task Situations: A FNIRS Study. Int. J. Psychophysiol. 2014, 92, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Lucas, M.; Wagshul, M.E.; Izzetoglu, M.; Holtzer, R. Moderating Effect of White Matter Integrity on Brain Activation during Dual-Task Walking in Older Adults. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 435–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maidan, I.; Nieuwhof, F.; Bernad-Elazari, H.; Bloem, B.R.; Giladi, N.; Hausdorff, J.M.; Claassen, J.A.H.R.; Mirelman, A. Evidence for Differential Effects of 2 Forms of Exercise on Prefrontal Plasticity During Walking in Parkinson’s Disease. Neurorehabil. Neural Repair 2018, 32, 200–208. [Google Scholar] [CrossRef]
- Maidan, I.; Nieuwhof, F.; Bernad-Elazari, H.; Reelick, M.F.; Bloem, B.R.; Giladi, N.; Deutsch, J.E.; Hausdorff, J.M.; Claassen, J.A.H.; Mirelman, A. The Role of the Frontal Lobe in Complex Walking among Patients With Parkinson’s Disease and Healthy Older Adults: An FNIRS Study. Neurorehabil. Neural Repair 2016, 30, 963–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meester, D.; Al-Yahya, E.; Dawes, H.; Martin-Fagg, P.; Pinon, C. Associations between Prefrontal Cortex Activation and H-Reflex Modulation during Dual Task Gait. Front. Hum. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metzger, F.G.; Ehlis, A.-C.; Haeussinger, F.B.; Schneeweiss, P.; Hudak, J.; Fallgatter, A.J.; Schneider, S. Functional brain imaging of walking while talking—An fnirs study. Neuroscience 2017, 343, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Maidan, I.; Bernad-Elazari, H.; Shustack, S.; Giladi, N.; Hausdorff, J.M. Effects of Aging on Prefrontal Brain Activation during Challenging Walking Conditions. Brain Cogn. 2017, 115, 41–46. [Google Scholar] [CrossRef]
- Mirelman, A.; Maidan, I.; Bernad-Elazari, H.; Nieuwhof, F.; Reelick, M.; Giladi, N.; Hausdorff, J.M. Increased Frontal Brain Activation during Walking While Dual Tasking: An FNIRS Study in Healthy Young Adults. J. Neuroeng. Rehabil. 2014, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, T.; Takeuchi, N.; Izumi, S.I. Prefrontal Cortex Activation during a Dual Task in Patients with Stroke. Gait Posture 2018, 59, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Nieuwhof, F.; Reelick, M.F.; Maidan, I.; Mirelman, A.; Hausdorff, J.M.; Olde Rikkert, M.G.M.; Bloem, B.R.; Muthalib, M.; Claassen, J.A.H.R. Measuring Prefrontal Cortical Activity during Dual Task Walking in Patients with Parkinson’s Disease: Feasibility of Using a New Portable FNIRS Device. Pilot Feasibility Stud. 2016, 2, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osofundiya, O.; Benden, M.E.; Dowdy, D.; Mehta, R.K. Obesity-Specific Neural Cost of Maintaining Gait Performance under Complex Conditions in Community-Dwelling Older Adults. Clin. Biomech. 2016, 35, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, G.; Balto, J.M.; Sandroff, B.M.; Holtzer, R.; Izzetoglu, M.; Motl, R.W.; Hernandez, M.E. Frontal Brain Activation Changes Due to Dual-Tasking under Partial Body Weight Support Conditions in Older Adults with Multiple Sclerosis. J. Neuroeng. Rehabil. 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Saleh, S.; Sandroff, B.M.; Vitiello, T.; Owoeye, O.; Hoxha, A.; Hake, P.; Goverover, Y.; Wylie, G.; Yue, G.; DeLuca, J. The Role of Premotor Areas in Dual Tasking in Healthy Controls and Persons with Multiple Sclerosis: An FNIRS Imaging Study. Front. Behav. Neurosci. 2018, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, S.; Alcock, L.; Rochester, L.; Vitorio, R.; Pantall, A. Monitoring Multiple Cortical Regions during Walking in Young and Older Adults: Dual-Task Response and Comparison Challenges. Int. J. Psychophysiol. 2019, 135, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verghese, J.; Wang, C.; Ayers, E.; Izzetoglu, M.; Holtzer, R. Brain Activation in High-Functioning Older Adults and Falls: Prospective Cohort Study. Neurology 2017, 88, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Wagshul, M.E.; Lucas, M.; Ye, K.; Izzetoglu, M.; Holtzer, R. Multi-Modal Neuroimaging of Dual-Task Walking: Structural MRI and FNIRS Analysis Reveals Prefrontal Grey Matter Volume Moderation of Brain Activation in Older Adults. Neuroimage 2019, 189, 745–754. [Google Scholar] [CrossRef]
- Chen, M.; Pillemer, S.; England, S.; Izzetoglu, M.; Mahoney, J.R.; Holtzer, R. Neural Correlates of Obstacle Negotiation in Older Adults: An FNIRS Study. Gait Posture 2017, 58, 130–135. [Google Scholar] [CrossRef] [PubMed]
- Doi, T.; Makizako, H.; Shimada, H.; Park, H.; Tsutsumimoto, K.; Uemura, K.; Suzuki, T. Brain Activation during Dual-Task Walking and Executive Function among Older Adults with Mild Cognitive Impairment: A FNIRS Study. Aging Clin. Exp. Res. 2013, 25, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Fraser, S.A.; Dupuy, O.; Pouliot, P.; Lesage, F.; Bherer, L. Comparable Cerebral Oxygenation Patterns in Younger and Older Adults during Dual-Task Walking with Increasing Load. Front. Aging Neurosci. 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- George, C.J.; Verghese, J.; Izzetoglu, M.; Wang, C.; Holtzer, R. The Effect of Polypharmacy on Prefrontal Cortex Activation during Single and Dual Task Walking in Community Dwelling Older Adults. Pharmacol. Res. 2019, 139, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Hermand, E.; Tapie, B.; Dupuy, O.; Fraser, S.; Compagnat, M.; Salle, J.Y.; Daviet, J.C.; Perrochon, A. Prefrontal Cortex Activation during Dual Task with Increasing Cognitive Load in Subacute Stroke Patients: A Pilot Study. Front. Aging Neurosci. 2019, 10, 1–6. [Google Scholar] [CrossRef]
- Hernandez, M.E.; Holtzer, R.; Chaparro, G.; Jean, K.; Balto, J.M.; Sandroff, B.M.; Izzetoglu, M.; Motl, R.W. Brain Activation Changes during Locomotion in Middle-Aged to Older Adults with Multiple Sclerosis. J. Neurol. Sci. 2016, 370, 277–283. [Google Scholar] [CrossRef]
- Chatterjee, S.A.; Fox, E.J.; Daly, J.J.; Rose, D.K.; Wu, S.S.; Christou, E.A.; Hawkins, K.A.; Otzel, D.M.; Butera, K.A.; Skinner, J.W.; et al. Interpreting Prefrontal Recruitment During Walking After Stroke: Influence of Individual Differences in Mobility and Cognitive Function. Front. Hum. Neurosci. 2019, 13. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A.; Cappell, K.A. Neurocognitive Aging and the Compensation Hypothesis. Curr. Dir. Psychol. Sci. 2008. [Google Scholar] [CrossRef]
- Audoin, B.; Van Au Duong, M.; Ranjeva, J.P.; Ibarrola, D.; Malikova, I.; Confort-Gouny, S.; Soulier, E.; Viout, P.; Ali-Chérif, A.; Pelletier, J.; et al. Magnetic Resonance Study of the Influence of Tissue Damage and Cortical Reorganization on PASAT Performance at the Earliest Stage of Multiple Sclerosis. Hum. Brain Mapp. 2005. [Google Scholar] [CrossRef] [PubMed]
- Loitfelder, M.; Fazekas, F.; Koschutnig, K.; Fuchs, S.; Petrovic, K.; Ropele, S.; Pichler, A.; Jehna, M.; Langkammer, C.; Schmidt, R.; et al. Brain Activity Changes in Cognitive Networks in Relapsing-Remitting Multiple Sclerosis—Insights from a Longitudinal FMRI Study. PLoS ONE 2014. [Google Scholar] [CrossRef] [PubMed]
- Staffen, W.; Mair, A.; Zauner, H.; Unterrainer, J.; Niederhofer, H.; Kutzelnigg, A.; Ritter, S.; Golaszewski, S.; Iglseder, B.; Ladurner, G. Cognitive Function and FMRI in Patients with Multiple Sclerosis: Evidence for Compensatory Cortical Activation during an Attention Task. Brain 2002. [Google Scholar] [CrossRef] [Green Version]
- Clark, D.J. Automaticity of Walking: Functional Significance, Mechanisms, Measurement and Rehabilitation Strategies. Front. Hum. Neurosci. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazui, H.; Kitagaki, H.; Mori, E. Cortical Activation during Retrieval of Arithmetical Facts and Actual Calculation: A Functional Magnetic Resonance Imaging Study. Psychiatry Clin. Neurosci. 2000, 54, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, A. Transient Hypofrontality as a Mechanism for the Psychological Effects of Exercise. Psychiatry Res. 2006. [Google Scholar] [CrossRef] [PubMed]
- Verghese, J.; Holtzer, R.; Lipton, R.B.; Wang, C. Mobility Stress Test Approach to Predicting Frailty, Disability, and Mortality in High-Functioning Older Adults. J. Am. Geriatr. Soc. 2012. [Google Scholar] [CrossRef] [Green Version]
- Beurskens, R.; Bock, O. Age-Related Deficits of Dual-Task Walking: A Review. Neural Plast. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Holtzer, R.; Izzetoglu, M. Mild Cognitive Impairments Attenuate Prefrontal Cortex Activations during Walking in Older Adults. Brain Sci. 2020, 10, 415. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, O.A.; Cronin, H.; Savva, G.M.; O’Regan, C.; Kenny, R.A. Effects of Fear of Falling and Activity Restriction on Normal and Dual Task Walking in Community Dwelling Older Adults. Gait Posture 2013, 38, 120–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, S.L.; Williams, C.S.; Gill, T.M. Characteristics Associated with Fear of Falling and Activity Restriction in Community-Living Older Persons. J. Am. Geriatr. Soc. 2002. [Google Scholar] [CrossRef]
- Schoene, D.; Heller, C.; Aung, Y.N.; Sieber, C.C.; Kemmler, W.; Freiberger, E. A Systematic Review on the Influence of Fear of Falling on Quality of Life in Older People: Is There a Role for Falls? Clin. Interv. Aging. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vellas, B.J.; Wayne, S.J.; Romero, L.; Baumgartner, R.N.; Rubenstein, L.Z.; Garry, P.J. One-Leg Balance Is an Important Predictor of Injurious Falls in Older Persons. J. Am. Geriatr. Soc. 1997. [Google Scholar] [CrossRef] [PubMed]
- Wijlhuizen, G.J.; de Jong, R.; Hopman-Rock, M. Older Persons Afraid of Falling Reduce Physical Activity to Prevent Outdoor Falls. Prev. Med. 2007. [Google Scholar] [CrossRef] [PubMed]
- Herold, F.; Müller, P.; Gronwald, T.; Müller, N.G. Dose–Response Matters!—A Perspective on the Exercise Prescription in Exercise–Cognition Research. Front. Psychol. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollesen, B.; Wanstrath, M.; Van Schooten, K.S.; Delbaere, K. A Taxonomy of Cognitive Tasks to Evaluate Cognitive-Motor Interference on Spatiotemoporal Gait Parameters in Older People: A Systematic Review and Meta-Analysis. Eur. Rev. Aging Phys. Act. 2019. [Google Scholar] [CrossRef] [Green Version]
- Izzetoglu, M.; Holtzer, R. Effects of Processing Methods on FNIRS Signals Assessed during Active Walking Tasks in Older Adults. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 699–709. [Google Scholar] [CrossRef]
- Menant, J.C.; Maidan, I.; Alcock, L.; Al-Yahya, E.; Cerasa, A.; Clark, D.J.; de Bruin, E.; Fraser, S.; Gramigna, V.; Hamacher, D.; et al. A Consensus Guide to Using Functional Near-Infrared Spectroscopy in Posture and Gait Research. Gait Posture 2020. [Google Scholar] [CrossRef] [PubMed]
- Yucel, M.A.; Luhmann, A.V.; Scholkmann, F.; Gervain, J.; Dan, I.; Ayaz, H.; Boas, D.; Cooper, R.J.; Culver, J.; Elwell, C.E.; et al. Best Practices for fNIRS publications. Neurophotonics 2021. [Google Scholar] [CrossRef]
- McKendrick, R.; Parasuraman, R.; Murtza, R.; Formwalt, A.; Baccus, W.; Paczynski, M.; Ayaz, H. Into the Wild: Neuroergonomic Differentiation of Hand-Held and Augmented Reality Wearable Displays during Outdoor Navigation with Functional Near Infrared Spectroscopy. Front. Hum. Neurosci. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKendrick, R.; Mehta, R.; Ayaz, H.; Scheldrup, M.; Parasuraman, R. Prefrontal Hemodynamics of Physical Activity and Environmental Complexity during Cognitive Work. Hum. Factors 2017. [Google Scholar] [CrossRef] [PubMed]
- Dehais, F.; Karwowski, W.; Ayaz, H. Brain at Work and in Everyday Life as the Next Frontier: Grand Field Challenges for Neuroergonomics. Front. Neuroergonom. 2020. [Google Scholar] [CrossRef]
- Ayaz, H.; Dehais, F. Neuroegonomics: The Brain at Work and in Everyday Life, 1st ed.; Academic Press: London, UK, 2019. [Google Scholar] [CrossRef]
Study | Study ID | Year | Type of Study | Age (Mean ± SD (years)) | Population | ||
---|---|---|---|---|---|---|---|
HYA | HOA | HYA | HOA | ||||
Beurskens et al. [41] | 1 | 2014 | Cross-sectional | 25 ± 3 | 71 ± 4 | 15 | 10 |
Chen et al. [57] | 2 | 2017 | Cross-sectional | NA | 78.1 ± 6 | NA | 90 |
Fraser et al. [59] | 3 | 2016 | Cross-sectional | 22 ± 2 | 67 ± 5 | 19 | 14 |
George et al. [60] | 4 | 2019 | Cross-sectional | NA | 76 ± 7 | NA | 325 |
Holtzer et al. † [35] | 5 | 2011 | Cross-sectional | 19–29 | 69–88 | 11 | 11 |
Holtzer et al. † [36] | 6 | 2016 | Cross-sectional | NA | 74 ± 6 | NA | 167 |
Holtzer et al. [37] | 7 | 2016 | Cross-sectional | NA | 77 ± 7 | NA | 314 |
Holtzer et al. [34] | 8 | 2017 | Cross-sectional | NA | 77 ± 7 | NA | 318 |
Holtzer et al. [33] | 9 | 2018 | Cross-sectional | NA | 77 ± 7 | NA | 315 |
Holtzer et al. [31] | 10 | 2019 | Cross-sectional | NA | 78 ± 6 | NA | 75 |
Holtzer et al. † [32] | 11 | 2019 | Cross-sectional | NA | 78 ± 6 | NA | 83 |
Lin et al. [38] | 12 | 2016 | Cross-sectional | 20–27 | NA | 24 | NA |
Lu et al. † [40] | 13 | 2015 | Cross-sectional | 23 ± 2 | NA | 17 | NA |
Lucas et al. † [42] | 14 | 2018 | Cross-sectional | NA | 75 ± 5 | NA | 55 |
Meester et al. [45] | 15 | 2014 | Cross-sectional | 28 ± 6 | NA | 17 | NA |
Metzger et al. [46] | 16 | 2017 | Cross-sectional | 28,19–39 | NA | 12 | NA |
Mirelman et al. † [48] | 17 | 2014 | Cross-sectional | 31 ± 4 | NA | 23 | NA |
Mirelman et al. † [47] | 18 | 2017 | Cross-sectional | 31 ± 4 | 70 ± 6 | 23 | 20 |
Osofundiya et al. [51] | 19 | 2016 | Cross-sectional | NA | 81 ± 7 | NA | 20 |
Stuart et al. [54] | 20 | 2019 | Cross-sectional | 20 ± 1 | 73 ± 8 | 17 | 18 |
Verghese et al. [55] | 21 | 2017 | Cross-sectional | NA | 75 ± 6 | NA | 166 |
Wagshul et al. [56] | 22 | 2019 | Cross-sectional | NA | >65 | NA | 55 |
PD | HOA | PD | HOA | ||||
Al-yahya et al. † [29] | 23 | 2019 | Cross-sectional | 66 ± 6 | 60 ± 7 | 29 | 22 |
Maidan et al. † [44] | 24 | 2016 | Cross-sectional | 72 ± 1 | 70 ± 1 | 68 | 38 |
Maidan et al. † [43] | 25 | 2018 | RCT | 72 ± 1 | NA | 64 | NA |
Nieuwhof et al. [50] | 26 | 2016 | Cross-sectional | 71 ± 5 | NA | 14 | NA |
Stroke | HOA | Stroke | HOA | ||||
Al-yahya et al. † [30] | 27 | 2016 | Cross-sectional | 60 ± 15 | 54 ± 9 | 19 | 20 |
Chatterjee et al. † [63] | 28 | 2019 | Cross-sectional | 60 ± 10 | NA | 33 | NA |
Hermand et al. [61] | 29 | 2019 | Cross-sectional | 71 ± 10 | NA | 11 | NA |
Liu et al. [39] | 30 | 2018 | Cross-sectional | 52 ± 11 | NA | 23 | NA |
Mori et al. [49] | 31 | 2018 | Cross-sectional | 61 ± 9 | 66 ± 1 | 14 | 14 |
MS | HOA | MS | HOA | ||||
Chaparro et al. † [52] | 32 | 2017 | Cross-sectional | 56 ± 5 | 63 ± 4 | 10 | 12 |
Hernandez et al. † [62] | 33 | 2016 | Cross-sectional | 57 ± 5 | 61 ± 4 | 8 | 8 |
Saleh et al. [53] | 34 | 2018 | Cross-sectional | 50 ± 8 | 50 ± 9 | 14 | 14 |
MCI | HOA | MCI | HOA | ||||
Doi et al. † [58] | 35 | 2013 | Cross-sectional | 75 ± 7 | NA | 16 | NA |
Study ID | Single Task | Mean ± SD | Dual Task | Mean ± SD | ||||
---|---|---|---|---|---|---|---|---|
HYA | HOA | HYA | HOA | |||||
01 | −0.13 ± 0.02 | −0.09 ± 0.04 | Walk & visual check | −0.15 ± 0.02 | −0.23 ± 0.05 | |||
WWT | −0.22 ± 0.02 | −0.09 ± 0.03 | ||||||
02 | NA | 0.30 ± 1.21 | WWT | NA | 1.08 ± 1.51 | |||
OW | ||||||||
03 | NA | NA | n-back task | 1-back: 15.87 ± 5.62 ◆ | 1-back: 15.87 ± 5.62 ◆ | |||
2-back: 13.67 ± 9.39 ◆ | 2-back: 13.67 ± 9.39 ◆ | |||||||
04 | NA | 0.11 ± 1.2 ◆ | RAL | NA | 0.705 ± 1.28 ◆ | |||
05 † | 0.43 ± 0.83 | 0.42 ± 0.49 | RAL | 1.96 ± 1.27 | 0.64 ± 0.60 | |||
06 † | NA | 0.22 ± 2.02 | RAL | NA | 0.94 ± 2.28 | |||
07 | NA | 0.11 ± 1.25 | RAL | NA | 0.73 ± 1.41 | |||
08 | NA | 0.11 ± 0.65 | RAL | NA | 0.66 ± 0.86 | |||
09 | NA | 0.11 ± 0.64 | RAL | NA | 0.7 ± 0.88 | |||
10 | NA | 0.215 ± 0.17 | RAL | NA | 0.995 ± 0.23 | |||
11 † | NA | 0.18 ± 1.51 | RAL | NA | 0.90 ± 1.72 | |||
12 | Wide | −0.06 ± 0.26 | NA | n-back walking Wide path Narrow path Obstacle path | 1-back −0.92 ± 0.33 −0.47 ± 0.35 −1.05 ± 0.39 | 3-back −0.75 ± 0.31 −0.52 ± 0.23 −0.68 ± 0.27 | NA | |
Narrow | 0.33 ± 0.36 | |||||||
Obstacle | −0.24 ± 0.36 | |||||||
13 † | NR | NA | SS7s | NR | NA | |||
14 † | NA | 0.39 ± 0.97 | RAL | NA | 0.9 ± 1.54 | |||
15 | 0.22 ± 0.11 −0.1 ± 0.25 ″ | NA | SS7s | 0.36 ± 0.1 −0.15 ± 0.30 ″ | NA | |||
16 | NA | NA | Letter generation task | NA | NA | |||
17 † | 0.02 ± 0.03 ◆ | NA | SS7s | 0.28 ± 0.03 ◆ | NA | |||
Counting back | 0.18 ± 0.03 ◆ | |||||||
18 † | −0.01 ± 0.04 ◆ | 0.17±0.05 ◆ | SS7s | 0.15 ± 0.04 ◆ | 0.31 ± 0.05 ◆ | |||
OW | 0.11 ± 0.04 ◆ | 0.28 ± 0.07 ◆ | ||||||
19 | NA | 0.36 ± 0.40 | Recite alternate letters | NA | 1.145 ± 0.5 | |||
Precision walking | 1.595 ± 0.445 | |||||||
20 | NA | NA | Digit vigilance task | −0.001 ± 0.07 | −0.011 ± 0.07 | |||
21 | NA | 0.08 ± 0.62 | RAL | NA | 0.74 ± 0.85 | |||
22 | NA | 0.4 ± 1.04 | RAL | NA | 1.03 ± 1.58 | |||
PD | HOA | PD | HOA | |||||
23 † | 1.27 ± 0.33 ◆ −0.76 ± 0.24 ◆″ | 1.10 ± 0.49 ◆ −0.82 ± 0.36 ◆″ | SS7s | 1.87 ± 0.46 ◆ −0.98 ± 0.34 ◆″ | 2.42 ± 0.68 ◆ −1.50 ± 0.50 ◆″ | |||
24 † | 0.24 ± 0.02 ◆ | 0.14 ± 0.04 ◆ | SS3s OW | 0.33 ± 0.03 ◆ | 0.25 ± 0.04 ◆ | |||
25 † | −0.04 ± 0.035 ◆ −0.04 ± 0.035 ◆ | NA | SS3s OW | −0.015 ± 0.035 ◆ 0.005 ± 0.035 ◆ | NA | |||
26 | NA | NA | Counting forward SS Reciting digits | 0.3 ± 0.07; 0.00 ± 0.05 ″ 0.44 ± 0.20; −0.02 ± 0.04 ″ 0.38 ± 0.15; −0.1 ± 0.19 ″ | NA | |||
Stroke | HOA | Stroke | HOA | |||||
27 † | 0.69 ± 0.22 ◆ −0.45 ± 1.0 ◆″ | 0.49 ± 0.13 ◆ −0.4 ± 1.0 ◆″ | SS7s | 1.02 ± 0.28 ◆ −0.65 ± 1.0 ◆″ | 0.72 ± 0.21 ◆ −0.51 ± 0.99 ◆″ | |||
28 † | 0.26 ± 0.09 ◆ −0.1 ± 0.05 ◆″ | NA | SS7s | 0.92 ± 0.17 ◆ −0.2 ± 0.1 ◆″ | NA | |||
29 | ST low | 1.19 ± 0.7 | NA | N-back | DT low | 2 ± 2.24 | NA | |
ST high | 1.23 ± 1.3 | DT high | 2.69 ± 2.22 | |||||
walk | 2.42 ± 1.93 | |||||||
30 | −5.3 ± 1.7 ◆: | NA | SS3s | 18.67 ± 2.1 ◆: | NA | |||
WMT | ||||||||
31 ∆ | −0.3 ± 1.73 | 0.69 ± 2.11 | SS3s | −0.073 ± 0.41 | 2.08 ± 1.87 | |||
MS | HOA | MS | HOA | |||||
32 † | 0.39 ± 0.1 ◆ | 0 ± 0.06 ◆ | WWT | 0.92 ± 0.1 ◆ | 0.13 ± 0.06 ◆ | |||
33 † | 0.85 ± 0.14 ◆ | 0.2 ± 0.09 ◆ | RAL | 1.77 ± 0.12 ◆ | 0.66 ± 0.07 ◆ | |||
34 | 2.22 ± 0.91 ◆: | 0.16 ± 0.95 ◆: | SS7s | 1.64 ± 0.95 ◆: | 3.18 ± 1.54 ◆: | |||
MCI | HOA | MCI | HOA | |||||
35 † | 0.06 ± 0.01 ◆ | NA | Letter fluency task | 0.16±0.02 ◆ | NA |
No. | Questions | Score |
---|---|---|
1 | Was the research question or objective of the study clearly stated? | 2 |
2 | Was the study population clearly specified and defined? | 1.94 |
3 | Were inclusion and exclusion criteria for being in the study prespecified and uniformly applied to all participants? | 1.66 |
4 | Was sample size justification, power description or variance and effect estimates provided? | 1.32 |
5 | For analysis of paper, were the exposure(s) of interest measured prior to the outcome(s) being measured? | 0.06 |
6 | Were the exposure measures (independent variables) clearly defined, valid, reliable, and implemented consistently across all study participants? | 2 |
7 | Were the outcome measures (dependent variables) clearly defined, valid, reliable, and implemented consistently across all study participants? | 1.97 |
8 | Were potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)? | 1.32 |
9 | Was dual task clearly defined and uniformly applied to all participants? | 2 |
10 | Was functional near infrared spectroscopy applied to prefrontal cortex part of brain and clearly defined in text? | 2 |
Total | 16.26 | |
SD | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bishnoi, A.; Holtzer, R.; Hernandez, M.E. Brain Activation Changes While Walking in Adults with and without Neurological Disease: Systematic Review and Meta-Analysis of Functional Near-Infrared Spectroscopy Studies. Brain Sci. 2021, 11, 291. https://doi.org/10.3390/brainsci11030291
Bishnoi A, Holtzer R, Hernandez ME. Brain Activation Changes While Walking in Adults with and without Neurological Disease: Systematic Review and Meta-Analysis of Functional Near-Infrared Spectroscopy Studies. Brain Sciences. 2021; 11(3):291. https://doi.org/10.3390/brainsci11030291
Chicago/Turabian StyleBishnoi, Alka, Roee Holtzer, and Manuel E. Hernandez. 2021. "Brain Activation Changes While Walking in Adults with and without Neurological Disease: Systematic Review and Meta-Analysis of Functional Near-Infrared Spectroscopy Studies" Brain Sciences 11, no. 3: 291. https://doi.org/10.3390/brainsci11030291
APA StyleBishnoi, A., Holtzer, R., & Hernandez, M. E. (2021). Brain Activation Changes While Walking in Adults with and without Neurological Disease: Systematic Review and Meta-Analysis of Functional Near-Infrared Spectroscopy Studies. Brain Sciences, 11(3), 291. https://doi.org/10.3390/brainsci11030291