Next Article in Journal
Up-regulation of MicroRNAs-21 and -223 in a Sprague-Dawley Rat Model of Traumatic Spinal Cord Injury
Previous Article in Journal
Brain–Computer Interface Spellers for Communication: Why We Need to Address Their Security and Authenticity
Previous Article in Special Issue
Evaluating Preschool Visual Attentional Selective-Set: Preliminary ERP Modeling and Simulation of Target Enhancement Homology
Open AccessArticle

Electroencephalogram (EEG) Alpha Power as a Marker of Visuospatial Attention Orienting and Suppression in Normoxia and Hypoxia. An Exploratory Study

1
School of Psychology, Vita e Salute San Raffaele University, 20132 Milan, Italy
2
Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20090 Milan, Italy
3
Dept. of Psychology, University of Milano-Bicocca, 20126 Milan, Italy
*
Author to whom correspondence should be addressed.
Brain Sci. 2020, 10(3), 140; https://doi.org/10.3390/brainsci10030140
Received: 23 January 2020 / Revised: 24 February 2020 / Accepted: 27 February 2020 / Published: 2 March 2020
(This article belongs to the Special Issue ERP and EEG Markers of Brain Visual Attentional Processing)
While electroencephalogram (EEG) alpha desynchronization has been related to anticipatory orienting of visuospatial attention, an increase in alpha power has been associated to its inhibition. A separate line of findings indicated that alpha is affected by a deficient oxygenation of the brain or hypoxia, although leaving unclear whether the latter increases or decreases alpha synchronization. Here, we carried out an exploratory study on these issues by monitoring attention alerting, orienting, and control networks functionality by means of EEG recorded both in normoxia and hypoxia in college students engaged in four attentional cue-target conditions induced by a redesigned Attention Network Test. Alpha power was computed through Fast Fourier Transform. Regardless of brain oxygenation condition, alpha desynchronization was the highest during exogenous, uncued orienting of spatial attention, the lowest during alerting but spatially unpredictable, cued exogenous orienting of attention, and of intermediate level during validly cued endogenous orienting of attention, no matter the motor response workload demanded by the latter, especially over the left hemisphere. Hypoxia induced an increase in alpha power over the right-sided occipital and parietal scalp areas independent of attention cueing and conflict conditions. All in all, these findings prove that attention orienting is undergirded by alpha desynchronization and that alpha right-sided synchronization in hypoxia might sub-serve either the effort to sustain attention over time or an overall suppression of attention networks functionality. View Full-Text
Keywords: EEG; FFT; alpha desynchronization; attention orienting; alerting; attention inhibition; neurocognitive perceptual and motor workload; hypoxia; overt motor responses; hemispheric lateralization EEG; FFT; alpha desynchronization; attention orienting; alerting; attention inhibition; neurocognitive perceptual and motor workload; hypoxia; overt motor responses; hemispheric lateralization
Show Figures

Figure 1

MDPI and ACS Style

Zani, A.; Tumminelli, C.; Proverbio, A.M. Electroencephalogram (EEG) Alpha Power as a Marker of Visuospatial Attention Orienting and Suppression in Normoxia and Hypoxia. An Exploratory Study. Brain Sci. 2020, 10, 140.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop