Determination of Trace Zearalenone and Its Metabolites in Human Serum by a High-Throughput UPLC-MS/MS Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection and Storage
2.3. Standard Solution and QC Samples
2.4. Sample Preparation
2.5. LC-MS/MS Analysis
2.6. Method Validation
3. Results and Discussion
3.1. Optimization of Mass Conditions
3.2. Chromatographic Separation
3.3. Sample Preparation
3.4. Method Validation
3.5. Method Application to Real Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kuiper-Goodman, T.; Scott, P.M.; Watanabe, H. Risk assessment of the mycotoxin zearalenone. Regul. Toxicol. Pharmacol. 1987, 7, 253–306. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinedine, A.; Soriano, J.M.; Moltó, J.C.; Mañés, J. Review on the toxicity, occurrence, metabolism, detoxification, regulation and intake of zearalen-one: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef]
- Döll, S.; Dänicke, S.; Schnurrbusch, U. The effect of increasing concentrations of Fusarium toxins in the diets for piglets on histological parameters of the uterus. Mycotoxin Res. 2003, 19, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Minervini, F.; Giannoccaro, A.; Cavallini, A.; Visconti, A. Investigations on cellular proliferation induced by zearalenone and its derivatives in relation to the estrogenic parameters. Toxicol. Lett. 2005, 159, 272–283. [Google Scholar] [CrossRef]
- Maaroufi, K.; Chekir, L.; Creppy, E.E.; Ellouz, F.; Bacha, H. Zearalenone induces modifications in haematological and biochemical parameters in rats. Toxicon 1996, 34, 534–540. [Google Scholar] [CrossRef]
- Concová, E.; Laciaková, A.; Pástorová, B.; Seidel, H.; Kovác, G. The effect of zearalenone on some enzymatic parameters in rabbits. Toxicol. Lett. 2001, 121, 145–149. [Google Scholar] [CrossRef]
- Biehl, M.L.; Prelusky, D.B.; Koritz, G.D.; Hartin, K.E.; Buck, W.B.; Trenholm, H.L. Biliary excretion and enterohepatic cycling of zearalenone in immature pigs. Toxicol. Appl. Pharmacol. 1993, 121, 152–159. [Google Scholar] [CrossRef]
- Erasmuson, A.E.; Scahill, B.G.; West, D.M. Natural zeranol (α-Zearalanol) in the urine of pasture-fed animals. J. Agric. Food Chem. 1994, 42, 2721–2725. [Google Scholar] [CrossRef]
- Videmann, B.; Mazallon, M.; Tep, J.; Lecoeur, S. Metabolism and transfer of the mycotoxin zearalenone in human intestinal Caco-2 cells. Food Chem. Toxicol. 2008, 46, 3279–3286. [Google Scholar] [CrossRef]
- Kennedy, D.G.; McEvoy, J.D.G.; Hewitt, S.A.; Cannavan, A.; Blanchflower, W.J.; Elliott, C.T. Zeranol is formed from Fusarium spp. toxins in cattle in vivo. Food Addit. Contam. 1998, 15, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Migdalof, B.H.; Dugger, H.A.; Heider, J.G.; Coombs, R.A.; Terry, M.K. Biotransformation of zeranol: Disposition and metabolism in the female rat, rabbit, dog, monkey and man. Xenobiotica 1983, 13, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Center for Veterinary Medicine (CVM). Guidance for Industry, Bioanalytical Method Validation; U.S. Department of Health and Human Services, Food and Drug Administration: Silver Spring, MD, USA, 2001.
- Peraica, M.; Rasic, D.; Milicevic, D. Principles of Risk Assessment of Mycotoxins in Food and Feed. In Proceedings of the International 57th Meat Industry Conference—Meat and Meat Products—Perspectives of Sustainable Production, Belgrade, Serbia, 10–12 June 2013. [Google Scholar]
- Routledge, M.N.; Gong, Y.Y.; De Saeger, S. (Eds.) Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed; Woodhead Publishing: Cambridge, UK, 2011; p. 225. [Google Scholar]
- Beltrán, E.; Ibáñez, M.; Portolés, T.; Ripollés, C.; Sancho, J.V.; Yusà, V.; Marín, S.; Hernández, F. Development of sensitive and rapid analytical methodology for food analysis of 18 mycotoxins included in a total diet study. Anal. Chim. Acta 2013, 783, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raad, F.; Nasreddine, L.; Hilan, C.; Bartosik, M.; Parent-Massin, D. Dietary exposure to aflatoxins, ochratoxin A and deoxynivalenol from a total diet study in an adult urban Lebanese population. Food Chem. Toxicol. 2014, 73, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Sirot, V.; Fremy, J.M.; Leblanc, J.C. Dietary exposure to mycotoxins and health risk assessment in the second French total diet study. Food Chem. Toxicol. 2013, 52, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Blokland, M.H.; Sterk, S.S.; Stephany, R.W.; Launay, E.M.; Kennedy, D.G.; Van Ginkel, L.A. Determination of resorcylic acid lactones in biological samples by GC-MS. Discrimination between illegal use and contamination with fusarium toxins. Anal. Bioanal. Chem. 2006, 384, 1221–1227. [Google Scholar] [CrossRef]
- Songsermsakul, P.; Sontag, G.; Cichna-Markl, M.; Zentek, J.; Razzazi-FaZOLi, E. Determination of zearalenone and its metabolites in urine, plasma and faeces of horses by HPLC-APCI-MS. J. Chromatogr. B 2006, 843, 252–261. [Google Scholar] [CrossRef]
- Song, S.; Ediage, E.N.; Wu, A.; DeSaeger, S. Development and application of salting-out assisted liquid/liquid extraction for multi-mycotoxin biomarkers analysis in pig urine with high performance liquid chromatography/tandem mass spectrometry. J. Chromatogr. A 2013, 1292, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Matraszek-Zuchowska, I.; Wozniak, B.; Zmudzki, J. Determination of zeranol, taleranol, zearalanone, α-zearalenol, β-zearalenol and zearalenone in urine by LC-MS/MS. Food Addit. Contam. 2013, 30, 987–994. [Google Scholar] [CrossRef]
- Belhassen, H.; Jiménez-Díaz, I.; Ghali, R.; Ghorbel, H.; Molina-Molina, J.M. Validation of a UHPLC-MS/MS method for quantification of zearalenone, α-zearalenol, β-zearalenol, α-zearalanol, β-zearalanol and zearalanone in human urine. J. Chromatogr. B 2014, 962, 68–74. [Google Scholar] [CrossRef]
- De Baerea, S.; Osselaere, A.; Devreese, M.; Vanhaeckeb, L.; De Backera, P.; Croubels, S. Development of a liquid–chromatography tandem mass spectrometry and ultra-high-performance liquid chromatography high-resolution mass spectrometry method for the quantitative determination of zearalenone and its major metabolites in chicken and pig plasma. Anal. Chim. Acta 2012, 756, 37–48. [Google Scholar] [CrossRef]
- Bandera, E.V.; Chandran, U.; Buckley, B.; Lin, Y.; Isukapalli, S.; Marshal, I.; King, M.; Zarbl, H. Urinary mycoestrogens, body size and breast development in New Jersey girls. Sci. Total Environ. 2011, 409, 5221–5227. [Google Scholar] [CrossRef] [Green Version]
- Ediagea, E.N.; Di Mavungua, J.D.; Song, S.Q. A direct assessment of mycotoxin biomarkers in human urine samples by liquid chromatography tandem mass spectrometry. Anal. Chim. Acta. 2012, 741, 58–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brezina, U.; Valenta, H.; Rempe, I.; Kersten, S.; Humpf, H.U.; Dänicke, S. Development of a liquid chromatography tandem mass spectrometry method for the simultaneous determination of zearalenone, deoxynivalenol and their metabolites in pig serum. Mycotoxin Res. 2014, 30, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Devreese, M.; De Baere, S.; De Backer, P.; Croubels, S. Quantitative determination of several toxicological important mycotoxins in pig plasma using multi-mycotoxin and analyte-specific high performance liquid chromatography–tandem mass spectrometric methods. J. Chromatogr. A 2012, 1257, 74–80. [Google Scholar] [CrossRef]
- Osselaere, A.; Devreese, M.; Goossens, J.; Vandenbroucke, V.; De Baere, S.; De Backer, P.; Croubels, S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013, 51, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.S.; Hong, S.H.; Hwang, S.W.; Kim, H.J.; Lee, J.B.; Yoon, H.S.; Kim, D.J.; Yoo, S.D. Determination of zearalenone by liquid chromatography/tandem mass spectrometry and application to a pharmacokinetic study. Biomed. Chromatogr. 2009, 23, 1014–1021. [Google Scholar] [CrossRef]
- Pillay, D.; Chuturgoon, A.A.; Nevines, E.; Manickum, T.; Deppe, W.; Dutton, M.F. The quantitative analysis of zearalenone and its derivatives in plasma of patients with breast and cervical cancer. Clin. Chem. Lab. Med. 2002, 40, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Fleck, S.C.; Churchwell, M.I.; Doerge, D.R.; Teeguarden, J.G. Urine and serum biomonitoring of exposure to environmental estrogens II: Soy isoflavones and zearalenone in pregnant women. Food Chem. Toxicl. 2016, 95, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.L.; Deng, C.L.; Zhou, S.; Zhao, Y.F.; Wang, D.; Wang, X.D.; Gong, Y.Y.; Wu, Y.N. High-throughput and sensitive determination of urinary zearalenone and metabolites by UPLC-MS/MS and its application to a human exposure study. Anal. Bioanal. Chem. 2018, 410, 5301–5312. [Google Scholar] [CrossRef]
- Meky, F.A.; Turner, P.C.; Ashcroft, A.E.; Miller, J.D.; Qiao, Y.L.; Roth, M.J.; Wild, C.P. Development of a urinary biomarker of human exposure to deoxynivalenol. Food Chem. Toxicol. 2003, 41, 265–273. [Google Scholar] [CrossRef]
- Turner, P.C.; Rothwell, J.A.; White, K.L.; Gong, Y.Y.; Cade, J.E.; Wild, C.P. Urinary deoxynivalenol is correlated with cereal intake in individuals from the United Kingdom. Environ. Health Perspect. 2008, 116, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzo, M.; Gambacorta, L.; Lattanzio, V.M.; Powers, S.; Visconti, A. Simultaneous LC-MS/MS determination of aflatoxin M1, ochratox- in A, deoxynivalenol, de-epoxydeoxynivalenol, alpha and beta-zearalenols and fumonisin B1 in urine as a multi-biomarker method to assess exposure to mycotoxins. Anal. Bioanal. Chem. 2011, 401, 2831–2841. [Google Scholar] [CrossRef]
- Warth, B.; Sulyok, M.; Fruhmann, P.; Mikula, H.; Berthiller, F.; Schuhmacher, R.; Hametner, C.; Abia, W.A.; Adam, G.; Froehlich, J.; et al. Development and validation of a rapid multi-biomarker liquid chromatography/tandem mass spectrometry method to assess human exposure to mycotoxins. Rapid Commun. Mass Spectrom. 2012, 26, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Osteresch, B.; Viegas, S.; Cramer, B.; Humpf, H.U. Multi-mycotoxin analysis using dried blood spots and dried serum spots. Anal. Bioanal. Chem. 2017, 409, 3369–3382. [Google Scholar] [CrossRef]
- De Santis, B.; Raggi, M.E.; Moretti, G.; Facchiano, F.; Mezzelani, A.; Villa, L.; Bonfanti, A.; Campioni, A.; Rossi, S.; Camposeo, S.; et al. Study on the association among mycotoxins and other variables in children with autism. Toxins 2017, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Massart, F.; Meucci, V.; Saggese, G.; Soldani, G. High growth rate of girls with precocious puberty exposed to estrogenic mycotoxins. J. Pediatr. 2008, 152, 690–695. [Google Scholar] [CrossRef] [PubMed]
Analyte | Precursor | Quantification ion | CV/CE1 | Confirmation ion | CV/CE1 | RT2 |
---|---|---|---|---|---|---|
ZEN | 317.1 | 175.0 | 20/24 | 130.9 | 20/32 | 3.24 |
α-ZOL | 319.1 | 159.8 | 6/30 | 174.1 | 6/20 | 2.78 |
β-ZOL | 319.1 | 159.8 | 36/28 | 174.1 | 36/26 | 2.11 |
α-ZAL | 321.1 | 277.0 | 6/20 | 303.1 | 6/22 | 2.60 |
β-ZAL | 321.1 | 303.1 | 26/20 | 277.3 | 26/28 | 1.92 |
ZAN | 319.1 | 275.0 | 48/22 | 205.1 | 48/22 | 3.10 |
13C-ZEN | 335.2 | 139.9 | 20/32 | 185.0 | 20/24 | 3.24 |
Analyte | RE (Extraction recovery, %) | Matrix Effect (%) | Precision % | Spiked Value (ng mL-1) | RM (Method recovery, %) | LOQ (ng mL−1) | LOD (ng mL−1) | |
---|---|---|---|---|---|---|---|---|
Intra-day | Inter-day | |||||||
ZEN | 94.06 | 85.2 | 2.53 | 3.62 | 0.5 | 119.5 | 0.1 (3 fmol) | 0.02 (0.6 fmol) |
1 | 110.1 | |||||||
5 | 102.2 | |||||||
α-ZOL | 99.95 | 78.09 | 3.12 | 4.29 | 0.5 | 100.4 | 0.2 (6 fmol) | 0.04 (1 fmol) |
1 | 103.6 | |||||||
5 | 109.0 | |||||||
β-ZOL | 111.8 | 84.17 | 3.81 | 4.96 | 0.5 | 91.6 | 0.2 (6 fmol) | 0.06 (2 fmol) |
1 | 92.9 | |||||||
5 | 92.4 | |||||||
α-ZAL | 106.5 | 76.83 | 4.32 | 8.22 | 0.5 | 105.6 | 0.2 (6 fmol) | 0.04 (1 fmol) |
1 | 110.0 | |||||||
5 | 106.5 | |||||||
β-ZAL | 116.1 | 77.24 | 4.25 | 5.98 | 0.5 | 100.5 | 0.1 (3 fmol) | 0.02 (0.6 fmol) |
1 | 106.1 | |||||||
5 | 103.2 | |||||||
ZAN | 100.4 | 81.77 | 5.99 | 7.04 | 0.5 | 123.6 | 0.1 (3 fmol) | 0.03 (1 fmol) |
1 | 110.7 | |||||||
5 | 100.1 |
Country | N | Positive | LOD/LOQ (ng/mL) | Means/Medians (Ranges, ng/mL) | References |
---|---|---|---|---|---|
Germany | 50 | 0 (ZAN, ZEN) | 1.0/1.0 | <LOD | [38] |
Italy | 233 | 5.4% (ZEN) | 1.0 | 0.1(<LOD~3.9) | [39] |
Italy | 63 | 6 (ZEN, α-ZOL) | 0.025/0.05 (ZEN, α-ZOL) 0.25/0.5 (β-ZOL, α-ZOL, β-ZOL) | 0.106 (α-ZOL), 0.934 (ZEN) | [40] |
USA | 30 | 1 | — | <LOQ | [32] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, D.; Li, C.; Zhou, S.; Zhao, Y.; Gong, Y.Y.; Gong, Z.; Wu, Y. Determination of Trace Zearalenone and Its Metabolites in Human Serum by a High-Throughput UPLC-MS/MS Analysis. Appl. Sci. 2019, 9, 741. https://doi.org/10.3390/app9040741
Sun D, Li C, Zhou S, Zhao Y, Gong YY, Gong Z, Wu Y. Determination of Trace Zearalenone and Its Metabolites in Human Serum by a High-Throughput UPLC-MS/MS Analysis. Applied Sciences. 2019; 9(4):741. https://doi.org/10.3390/app9040741
Chicago/Turabian StyleSun, Danlei, Chenglong Li, Shuang Zhou, Yunfeng Zhao, Yun Yun Gong, Zhiyong Gong, and Yongning Wu. 2019. "Determination of Trace Zearalenone and Its Metabolites in Human Serum by a High-Throughput UPLC-MS/MS Analysis" Applied Sciences 9, no. 4: 741. https://doi.org/10.3390/app9040741
APA StyleSun, D., Li, C., Zhou, S., Zhao, Y., Gong, Y. Y., Gong, Z., & Wu, Y. (2019). Determination of Trace Zearalenone and Its Metabolites in Human Serum by a High-Throughput UPLC-MS/MS Analysis. Applied Sciences, 9(4), 741. https://doi.org/10.3390/app9040741