# Surface Patterns for Drag Modification in Volleyballs

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experiments

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Frohlich, C. Aerodynamic drag crisis and its possible effect on the flight of baseballs. Am. J. Phys.
**1984**, 52, 325–334. [Google Scholar] [CrossRef] - Mehta, R.D. Aerodynamics of sports balls. Annu. Rev. Fluid Mech.
**1985**, 17, 151–189. [Google Scholar] [CrossRef] - Asai, T.; Akatsuka, T.; Haake, S. The physics of football. Phys. World
**1998**, 11, 5–27. [Google Scholar] [CrossRef] - Cho, A. In volleyball, crafty players serve up an aerodynamic crisis. Science
**2004**, 306, 42. [Google Scholar] [CrossRef] [PubMed] - Veilleux, T.; Simonds, V. How do dimples in golf balls affect their flight? Sci. Am.
**2004**, 290, 1. [Google Scholar] - Bot, P.; Rabaud, M.; Thomas, G.; Lombardi, A.; Lebret, C. Sharp transition in the lift force of a fluid flowing past nonsymmetrical obstacles: evidence for a lift crisis in the drag crisis regime. Phys. Rev. Lett.
**2016**, 117, 234501. [Google Scholar] [CrossRef] [PubMed] - Brancazio, P.J. Equations of sport. Science
**1990**, 249, 1447–1448. [Google Scholar] [CrossRef] - Choi, J.; Jeon, W.P.; Choi, H. Mechanism of drag reduction by dimples on a sphere. Phys. Fluids
**2006**, 18, 041702. [Google Scholar] [CrossRef][Green Version] - Corten, G.P.; Veldkamp, H.F. Damage mitigation techniques in wind turbine blades: A review. Nature
**2001**, 412, 41–42. [Google Scholar] [CrossRef] - Jiménez, J. Turbulent flow over rough walls. Annu. Rev. Fluid Mech.
**2004**, 36, 173–196. [Google Scholar] [CrossRef] - Dean, B.; Bhushan, B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: A review. Phil. Trans. R. Soc. A
**2010**, 368, 4775–4806. [Google Scholar] [CrossRef] [PubMed] - Lauder, G.V.; Wainwright, D.K.; Domel, A.G.; Weaver, J.C.; Wen, L.; Bertoldi, K. Structure, biomimetics, and fluid dynamics of fish skin surfaces. Phys. Rev. Fluids
**2016**, 1, 060502. [Google Scholar] [CrossRef] - Bocanegra Evans, H.; Hamed, A.M.; Gorumlu, S.; Doosttalab, A.; Aksak, B.; Chamorro, L.P.; Castillo, L. Engineered bio-inspired coating for passive flow control. Proc. Natl. Acad. Sci. USA
**2018**, 115, 1210–1214. [Google Scholar] [CrossRef] [PubMed][Green Version] - Cross, R. Effects of turbulence on the drag force on a golf ball. Eur. J. Phys.
**2016**, 37, 054101. [Google Scholar] [CrossRef] - Texier, B.D.; Cohen, C.; Quere, D.; Clanet, C. Physics of knuckleballs. New J. Phys.
**2016**, 18, 073027. [Google Scholar] [CrossRef][Green Version] - Hong, S.; Asai, T. Effect of panel shape of soccer ball on its flight characteristics. Sci. Rep.
**2014**, 4, 5068. [Google Scholar] [CrossRef] [PubMed] - Hong, S.; Asai, T.; Seo, K. Visualization of air flow around soccer ball using a particle image velocimetry. Sci. Rep.
**2015**, 5, 15108. [Google Scholar] [CrossRef] [PubMed][Green Version] - Mehta, R.; Alam, F.; Subic, A. Review of tennis ball aerodynamics. Sports Technol.
**2008**, 1, 7–16. [Google Scholar] [CrossRef] - Asai, T.; Ito, S.; Seo, K.; Hitotsubashi, A. Aerodynamics of a new volleyball. Procedia Eng.
**2010**, 2, 2493–2498. [Google Scholar] [CrossRef][Green Version] - Bush, J.W.M. Sports Physics; Clanet, C., Ed.; Les Éditions de l’École Polytechnique: Palaiseau, France, 2013. [Google Scholar]
- Cohen, C.; Darbois-Texier, B.; Dupeux, G.; Brunel, E.; Quere, D.; Clanet, C. The aerodynamic wall. Proc. R. Soc. A
**2014**, 470, 20130497. [Google Scholar] [CrossRef][Green Version] - Miyazaki, T.; Sakai, W.; Komatsu, T.; Takahashi, N.; Himeno, R. Lift crisis of a spinning table tennis ball. Eur. J. Phys.
**2017**, 38, 024001. [Google Scholar] [CrossRef] - Cross, R.; Lindsey, C. Measurements of drag and lift on smooth balls in flight. Eur. J. Phys.
**2017**, 38, 044002. [Google Scholar] [CrossRef] - Goff, J.E.; Kelley, J.; Hobson, C.M.; Seo, K.; Asai, T.; Choppin, S.B. Creating drag and lift curves from soccer trajectories. Eur. J. Phys.
**2017**, 38, 044003. [Google Scholar] [CrossRef] - Silva, M.; Lacerda, D.; João, D.P.V. Game-related volleyball skills that influence victory. J. Hum. Kinet.
**2014**, 41, 173–179. [Google Scholar] [CrossRef] [PubMed] - MacKenzie, S.; Kortegaard, K.; LeVangie, M.; Barro, B. Evaluation of two methods of the jump float serve in volleyball. J. Appl. Biomech.
**2012**, 28, 579–586. [Google Scholar] [CrossRef] [PubMed] - Hong, S.; Asai, T. Aerodynamic effects of dimples on soccer ball surfaces. Heliyon
**2017**, 3, e00432. [Google Scholar] [CrossRef] - Chowdhury, H.; Loganathan, B.; Wang, Y.; Mustary, I.; Alam, F. A study of dimple characteristics on golf ball drag. Procedia Eng.
**2016**, 147, 87–91. [Google Scholar] [CrossRef] - Rastegari, A.; Akhavan, R. The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets. J. Fluid Mech.
**2018**, 838, 68–104. [Google Scholar] [CrossRef] - Oggiano, L.; Sætran, L. Aerodynamics of modern soccer balls. Procedia Eng.
**2010**, 2, 2473–2479. [Google Scholar] [CrossRef][Green Version] - Coleman, S.G.; Benham, A.S.; Northcott, S.R. A three-dimensional cinematographical analysis of the volleyball spike. J. Sports Sci.
**1993**, 11, 295–302. [Google Scholar] [CrossRef] - Jalilian, P.; Kreun, P.K.; Makhmalbaf, M.M.; Liou, W.W. Computational aerodynamics of baseball, soccer ball and volleyball. Am. J. Sports Sci.
**2014**, 2, 115–121. [Google Scholar] [CrossRef] - Kao, S.S.; Sellens, R.W.; Stevenson, J.M. A mathematical model for the trajectory of a spiked volleyball and its coaching application. J. Appl. Biomech.
**1994**, 10, 95–109. [Google Scholar] [CrossRef] - Wei, Q.; Lin, R.; Liu, Z. Vortex-induced dynamic loads on a non-spinning volleyball. Fluid Dyn. Res.
**1988**, 3, 231–237. [Google Scholar] - Asai, T.; Ito, S.; Seo, K.; Hitotsubashi, A. Fundamental aerodynamics of a new volleyball. Sports Technol.
**2010**, 3, 235–239. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Surface patterns of volleyballs with (

**a**) transverse and (

**b**) diagonal directions on panels. (

**c**) In conventional volleyballs, the existence of two panel directions is a result of conventional assembly with six panels. (

**d**) Surface patterns for conventional balls (Conv-1 and Conv-2) and modified balls with hexagon and dimple patterns.

**Figure 2.**Drag crisis of volleyballs. Circles and squares represent transverse and diagonal directions, respectively, with different surface patterns: (

**a**) Conv-1, (

**b**) Conv-2, (

**c**) Hexagon and (

**d**) Dimple. Inset shows the wind tunnel experiment. To check out the experimental uncertainty, three data were included for each case. Discrepancy in drag crisis appears in conventional balls, while similarity in drag crisis in balls with isotropic patterns.

**Figure 3.**Flight characteristics of volleyballs. (

**a**) An illustration for flight trajectory. (

**b**) Lateral (L) and horizontal (H) flight distances were measured from the landing position experiment using a hitting robot. (

**c**) All data of lateral and horizontal distances are summarized. Each panel with equidistant intervals is depicted at the same range of $\pm 2$ m (lateral) and from 10 to 20 m (horizontal). Blue and red represents transverse and diagonal directions, respectively. Big circles and squares are the average values with error bars taken from the standard deviations.

**Figure 4.**The lift and side forces acting on the ball taken in the wind tunnel experiment (10 s, wind speed 15 m/s) are quite isotropic from the balls with isotropic (Hexagon and Dimple) surface patterns. Blue and red represents transverse and diagonal directions, respectively. Big circles and squares are the average values with error bars taken from the standard deviations.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hong, S.; Asai, T.; Weon, B.M.
Surface Patterns for Drag Modification in Volleyballs. *Appl. Sci.* **2019**, *9*, 4007.
https://doi.org/10.3390/app9194007

**AMA Style**

Hong S, Asai T, Weon BM.
Surface Patterns for Drag Modification in Volleyballs. *Applied Sciences*. 2019; 9(19):4007.
https://doi.org/10.3390/app9194007

**Chicago/Turabian Style**

Hong, Sungchan, Takeshi Asai, and Byung Mook Weon.
2019. "Surface Patterns for Drag Modification in Volleyballs" *Applied Sciences* 9, no. 19: 4007.
https://doi.org/10.3390/app9194007