# Surface-Wave Extraction Based on Morphological Diversity of Seismic Events

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## Featured Application

**The proposed method is applicable for surface-wave extraction on X component in multicomponent seismic exploration. This method has application potential for the separation of PS-waves and surface waves whose frequencies and velocities are close.**

## Abstract

## 1. Introduction

## 2. Conventional Method: Extracting Surface Waves in the f-v Domain

## 3. New Method: Sparse Representations of Wavefields Based on MCA

#### 3.1. Frequency-Domain High-Resolution LRT

#### 3.2. Time-Domain High-Resolution HRT

#### 3.3. Performance of Sparse Representations Using LRT and HRT

## 4. Examples

#### 4.1. Synthetic Examples

#### 4.1.1. Distortion of Surface-Wave Dispersive Energy Caused by Reflections

#### 4.1.2. Recovery of the Surface-Wave Dispersive Energy

#### 4.2. Field Example

## 5. Discussion

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Eker, A.M.; Akgün, H.; Koçkar, M.K. Local Site Characterization and Seismic Zonation Study by Utilizing Active and Passive Surface Wave Methods: A Case Study for the Northern Side of Ankara, Turkey. Eng. Geol.
**2012**, 151, 64–81. [Google Scholar] [CrossRef] - Kästle, E.D.; El-Sharkawy, A.; Boschi, L.; Meier, T.; Rosenberg, C.; Bellahsen, N.; Cristiano, L.; Weidle, C. Surface Wave Tomography of the Alps Using Ambient-Noise and Earthquake Phase Velocity Measurements. J. Geophys. Res. Solid Earth
**2018**, 123, 1770–1792. [Google Scholar] [CrossRef] - Yang, C.Y.; Wang, Y.; Lu, J. Application of Rayleigh Waves on PS-Wave Static Corrections. J. Geophys. Eng.
**2012**, 9, 90–97. [Google Scholar] [CrossRef] - Muyzert, E. Scholte Wave Velocity Inversion for a near Surface S-Velocity Model and PS-Statics. In Proceedings of the 70th Annual International Meeting, SEG, Expanded Abstracts, Calgary, AB, Canada, 6–11 August 2000; pp. 1197–1200. [Google Scholar] [CrossRef]
- Song, X.H.; Gu, H.M.; Liu, J.P.; Zhang, X.Q. Estimation of Shallow Subsurface Shear-Wave Velocity by Inverting Fundamental and Higher-Mode Rayleigh Waves. Soil Dyn. Earthq. Eng.
**2007**, 27, 599–607. [Google Scholar] [CrossRef] - Xia, J.H.; Miller, R.D.; Park, C.B.; Tian, G. Inversion of High Frequency Surface Waves with Fundamental and Higher Modes. J. Appl. Geophys.
**2003**, 52, 45–57. [Google Scholar] [CrossRef] - Poggi, V.; Fäh, D. Estimating Rayleigh Wave Particle Motion from Three-Component Array Analysis of Ambient Vibrations. Geophys. J. Int.
**2010**, 180, 251–267. [Google Scholar] [CrossRef] - Kimman, W.P.; Campman, X.; Trampert, J. Characteristics of Seismic Noise: Fundamental and Higher Mode Energy Observed in the Northeast of the Netherlands. Bull. Seismol. Soc. Am.
**2012**, 102, 1388–1399. [Google Scholar] [CrossRef] - Savage, M.K.; Lin, F.C.; Townend, J. Ambient Noise Cross-Correlation Observations of Fundamental and Higher-Mode Rayleigh Wave Propagation Governed by Basement Resonance. Geophys. Res. Lett.
**2013**, 40, 3556–3561. [Google Scholar] [CrossRef] - Luo, Y.H.; Xia, J.H.; Miller, R.D.; Xu, Y.X.; Liu, J.P.; Liu, Q.S. Rayleigh-Wave Dispersive Energy Imaging Using a High-Resolution Linear Radon Transform. Pure Appl. Geophys.
**2008**, 165, 903–922. [Google Scholar] [CrossRef] - Xia, J.H.; Xu, Y.X.; Luo, Y.H.; Miller, R.D.; Cakir, R.; Zeng, C. Advantages of Using Multichannel Analysis of Love Waves (Malw) to Estimate near-Surface Shear-Wave Velocity. Surv. Geophys.
**2012**, 33, 841–860. [Google Scholar] [CrossRef] - Zhang, S.X.; Chan, L.S. Possible Effects of Misidentified Mode Number on Rayleigh Wave Inversion. J. Appl. Geophys.
**2003**, 53, 17–29. [Google Scholar] [CrossRef] - Liu, Z.; Chen, Y.; Ma, J. Ground Roll Attenuation by Synchrosqueezed Curvelet Transform. J. Appl. Geophys.
**2018**, 151, 246–262. [Google Scholar] [CrossRef] - Naghizadeh, M.; Sacchi, M. Ground-Roll Attenuation Using Curvelet Downscaling. Geophysics
**2018**, 83, V185–V195. [Google Scholar] [CrossRef] - Hosseini, S.A.; Javaherian, A.; Hassani, H.; Torabi, S.; Sadri, M. Adaptive Attenuation of Aliased Ground Roll Using the Shearlet Transform. J. Appl. Geophys.
**2015**, 112, 190–205. [Google Scholar] [CrossRef] - Lu, J.; Yun, W.; Yang, C.Y. Instantaneous Polarization Filtering Focused on Suppression of Surface Waves. Appl. Geophys.
**2010**, 7, 88–97. [Google Scholar] [CrossRef] - Lu, J.; Wang, Y.; Chen, J.Y. Noise Attenuation Based on Wave Vector Characteristics. Appl. Sci.
**2018**, 8, 672. [Google Scholar] [CrossRef] - Trad, D.; Sacchi, M.D.; Ulrych, T.J. A Hybrid Linear-Hyperbolic Radon Transform. J. Seism. Explor.
**2001**, 9, 303–318. [Google Scholar] - Hu, Y.; Wang, L.M.; Cheng, F.; Luo, Y.H.; Shen, C.; Mi, B.B. Ground-Roll Noise Extraction and Suppression Using High-Resolution Linear Radon Transform. J. Appl. Geophys.
**2016**, 128, 8–17. [Google Scholar] [CrossRef] - Luo, Y.H.; Xia, J.H.; Miller, R.D.; Xu, Y.; Liu, J.P.; Liu, Q.S. Rayleigh-Wave Mode Separation by High-Resolution Linear Radon Transform. Geophys. J. Int.
**2009**, 179, 254–264. [Google Scholar] [CrossRef] - Ibrahim, A.; Sacchi, M.D. Simultaneous Source Separation Using a Robust Radon Transform. Geophysics
**2014**, 79, V1–V11. [Google Scholar] [CrossRef] - Trad, D.; Ulrych, T.J.; Sacchi, M.D. Latest Views of the Sparse Radon Transform. Geophysics
**2003**, 68, 386–399. [Google Scholar] [CrossRef] - Starck, J.L.; Elad, M.; Donoho, D.L. Redundant Multiscale Transforms and Their Application for Morphological Component Separation. Adv. Imaging Electron Phys.
**2004**, 132, 287–348. [Google Scholar] [CrossRef] [Green Version] - Starck, J.L.; Elad, M.; Donoho, D.L. Image Decomposition Via the Combination of Sparse Representations and a Variational Approach. IEEE Trans. Image Process.
**2005**, 14, 1570–1582. [Google Scholar] [CrossRef] [PubMed] - Wang, W.; Gao, J.H.; Chen, W.C.; Xu, J. Data Adaptive Ground-Roll Attenuation Via Sparsity Promotion. J. Appl. Geophys.
**2012**, 83, 19–28. [Google Scholar] [CrossRef] - Jiang, X.X.; Zheng, F.; Jia, H.Q.; Lin, J.; Yang, H.Y. Time-Domain Hyperbolic Radon Transform for Separation of P-P and P-Sv Wavefields. Stud. Geophys. Geod.
**2016**, 60, 91–111. [Google Scholar] [CrossRef] - Gholami, A.; Aghamiry, H.S. Iteratively Re-Weighted and Refined Least Squares Algorithm for Robust Inversion of Geophysical Data. Geophys. Prospect.
**2017**, 65, 201–215. [Google Scholar] [CrossRef] - Trad, D.; Ulrych, T.J.; Sacchi, M.D. Accurate Interpolation with High-Resolution Time-Variant Radon Transforms. Geophysics
**2002**, 67, 25–26. [Google Scholar] [CrossRef] - Sabbione, J.I.; Sacchi, M.D. Restricted Model Domain Time Radon Transforms. Geophysics
**2016**, 81, A17–A21. [Google Scholar] [CrossRef] - Sabbione, J.I.; Velis, D.R.; Sacchi, M.D. Microseismic Data Denoising Via an Apex-Shifted Hyperbolic Radon Transform. In Proceedings of the 83rd Annual International Meeting, SEG, Expanded Abstracts, Houston, TX, USA, 22–27 September 2013; pp. 2155–2161. [Google Scholar] [CrossRef]
- Xu, Y.X.; Xia, J.H.; Miller, R.D. Numerical Investigation of Implementation of Air-Earth Boundary by Acoustic-Elastic Boundary Approach. Geophysics
**2007**, 72, SM147–SM153. [Google Scholar] [CrossRef] - Sun, J.Z.; Chen, X.; Tian, X.F. Engineering Infrastructure Nondestructive Testing with Rayleigh Waves: Case Studies in Transportation and Archaeology. J. Geophys. Eng.
**2007**, 4, 268. [Google Scholar] [CrossRef] - Gong, X.B.; Yu, C.X.; Wang, Z.H. Separation of Prestack Seismic Diffractions Using an Improved Sparse Apex-Shifted Hyperbolic Radon Transform. Explor. Geophys.
**2016**, 48, 476–484. [Google Scholar] [CrossRef]

**Figure 3.**The curves of the reconstruction errors of (

**a**) surface waves and (

**b**) reflections against the threshold amplitude. LRT: linear Radon transform; HRT: hyperbolic Radon transform.

**Figure 4.**(

**a**) A synthetic X-component shot gather of Model 3 and (

**b**) its image of dispersive energy in the f-v domain.

**Figure 5.**(

**a**) A synthetic X-component shot gather of Model 4, (

**b**) its image of dispersive energy in the f-v domain, and (

**c**) dispersion curves picked from the dispersive energy, where the white dotted lines represent the theoretical dispersion curves.

**Figure 6.**(

**a**) The result of surface-wave extraction by the proposed method and (

**b**) its image of dispersive energy in the f-v domain, where the white dotted lines represent the theoretical dispersion curves.

**Figure 7.**(

**a**) The result of surface-wave separation by a two-dimensional (2D) window of the f-v domain and (

**b**) its image of dispersive energy in the f-v domain.

**Figure 8.**(

**a**) The result of surface-wave separation by the f-k filtering method and (

**b**) its image of dispersive energy in the f-v domain.

**Figure 9.**The X-component field data of 2D3C seismic data acquired in the Wangjiatun District, Daqing Oilfield, China.

**Figure 11.**(

**a**) The extracted surface waves by the proposed method and (

**b**) the rest of the field data.

**Figure 13.**(

**a**) An image of dispersive energy of the extracted surface waves using the proposed method and (

**b**) dispersion curves picked from Figure 13a.

**Figure 14.**An image of dispersive energy of the extracted surface waves by the f-k filtering method.

Thickness (m) | Vp (m/s) | Vs (m/s) | Density (kg/m^{3}) |
---|---|---|---|

10 | 800 | 200 | 2000 |

- | 1200 | 400 | 2000 |

Thickness (m) | Vp (m/s) | Vs (m/s) | Density (kg/m^{3}) |
---|---|---|---|

100 | 1200 | 400 | 2000 |

150 | 2200 | 1320 | 2250 |

- | 3300 | 2045 | 2400 |

Thickness (m) | Vp (m/s) | Vs (m/s) | Density (kg/m^{3}) |
---|---|---|---|

10 | 800 | 200 | 2000 |

90 | 1200 | 600 | 2000 |

Thickness (m) | Vp (m/s) | Vs (m/s) | Density (kg/m^{3}) |
---|---|---|---|

10 | 800 | 200 | 2000 |

90 | 1200 | 600 | 2000 |

600 | 2200 | 1320 | 2250 |

- | 3300 | 2045 | 2400 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Qiu, X.; Wang, C.; Lu, J.; Wang, Y.
Surface-Wave Extraction Based on Morphological Diversity of Seismic Events. *Appl. Sci.* **2019**, *9*, 17.
https://doi.org/10.3390/app9010017

**AMA Style**

Qiu X, Wang C, Lu J, Wang Y.
Surface-Wave Extraction Based on Morphological Diversity of Seismic Events. *Applied Sciences*. 2019; 9(1):17.
https://doi.org/10.3390/app9010017

**Chicago/Turabian Style**

Qiu, Xinming, Chao Wang, Jun Lu, and Yun Wang.
2019. "Surface-Wave Extraction Based on Morphological Diversity of Seismic Events" *Applied Sciences* 9, no. 1: 17.
https://doi.org/10.3390/app9010017