Special Issue on Modeling, Simulation, Operation and Control of Discrete Event Systems
Acknowledgments
Conflicts of Interest
References
- Lu, X.; Zhou, M.; Ammari, A.C.; Ji, J. Hybrid Petri Nets for Modeling and Analysis of Microgrid Systems. IEEE/CAA J. Autom. Sin. 2016, 3, 347–354. [Google Scholar]
- Ran, N.; Su, H.; Wang, S. An Improved Approach to Test Diagnosability of Bounded Petri Nets. IEEE/CAA J. Autom. Sin. 2017, 4, 297–303. [Google Scholar] [CrossRef]
- Wu, N.; Zhou, M.; Bai, L.; Li, Z. Short-term Scheduling of Crude Oil Operations in Refinery with High-fusion-point Oil and Two Transportation Pipelines. Enterp. Inf. Syst. 2016, 10, 581–610. [Google Scholar] [CrossRef]
- Wu, N.; Zhou, M.; Li, Z. Short-term Scheduling of Crude-oil Operations: Petri net-based Control-theoretic Approach. IEEE Robot. Autom. Mag. 2015, 22, 64–76. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Barkaoui, K.; Giua, A. On the Enforcement of a Class of Nonlinear Constraints on Petri Nets. Automatica 2015, 55, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Khemaissia, I.; Khalgui, M.; Li, Z.; Mosbahi, O.; Zhou, M. Dynamic Low-power Reconfiguration of Real-time Systems with Periodic and Probabilistic Tasks. IEEE Trans. Autom. Sci. Eng. 2015, 12, 258–271. [Google Scholar] [CrossRef]
- Yao, L.; Li, J. Input–Output Finite Time Stabilization of Time-Varying Impulsive Positive Hybrid Systems under MDADT. Appl. Sci. 2017, 7, 1187. [Google Scholar] [CrossRef]
- Yang, M.; Peng, Y.; Ju, R.; Xu, X.; Yin, Q.; Huang, K. A Lookahead Behavior Model for Multi-Agent Hybrid Simulation. Appl. Sci. 2017, 7, 1095. [Google Scholar] [CrossRef]
- Kucharska, E. Heuristic Method for Decision-Making in Common Scheduling Problems. Appl. Sci. 2017, 7, 1073. [Google Scholar] [CrossRef]
- Choi, S.; Seo, K.; Kim, T. Accelerated Simulation of Discrete Event Dynamic Systems via a Multi-Fidelity Modeling Framework. Appl. Sci. 2017, 7, 1056. [Google Scholar] [CrossRef]
- Ma, Y.; Qiao, F.; Zhao, F.; Sutherland, J. Dynamic Scheduling of a Semiconductor Production Line Based on a Composite Rule Set. Appl. Sci. 2017, 7, 1052. [Google Scholar] [CrossRef]
- Choi, Y.; Jin, S.; Kim, K. Deterministic and Robust Optimization Approach for Single Artillery Unit Fire Scheduling Problem. Appl. Sci. 2017, 7, 1038. [Google Scholar] [CrossRef]
- Arriagada-Benítez, M.; Sepúlveda, M.; Munoz-Gama, J.; Buijs, J. Strategies to Automatically Derive a Process Model from a Configurable Process Model Based on Event Data. Appl. Sci. 2017, 7, 1023. [Google Scholar] [CrossRef]
- Tamás, P. Decision Support Simulation Method for Process Improvement of Intermittent Production Systems. Appl. Sci. 2017, 7, 950. [Google Scholar] [CrossRef]
- Hong, Z.; Feng, Y.; Li, Z.; Tian, G.; Tan, J. Reliability-Based and Cost-Oriented Product Optimization Integrating Fuzzy Reasoning Petri Nets, Interval Expert Evaluation and Cultural-Based DMOPSO Using Crowding Distance Sorting. Appl. Sci. 2017, 7, 791. [Google Scholar] [CrossRef]
- Wang, C.; Hsu, H.; Tran, V. An Improved Dispatching Method (a-HPDB) for Automated Material Handling System with Active Rolling Belt for 450 mm Wafer Fabrication. Appl. Sci. 2017, 7, 780. [Google Scholar] [CrossRef]
- Alfian, G.; Rhee, J.; Ijaz, M.; Syafrudin, M.; Fitriyani, N. Performance Analysis of a Forecasting Relocation Model for One-Way Carsharing. Appl. Sci. 2017, 7, 598. [Google Scholar] [CrossRef]
- An, Y.; Wu, N.; Hon, C.; Li, Z. Scheduling of Crude Oil Operations in Refinery without Sufficient Charging Tanks Using Petri Nets. Appl. Sci. 2017, 7, 564. [Google Scholar] [CrossRef]
- Markiewicz, M.; Gniewek, L. A Program Model of Fuzzy Interpreted Petri Net to Control Discrete Event Systems. Appl. Sci. 2017, 7, 422. [Google Scholar] [CrossRef]
- Kammoun, M.; Ezzeddine, W.; Rezg, N.; Achour, Z. FMS Scheduling under Availability Constraint with Supervisor Based on Timed Petri Nets. Appl. Sci. 2017, 7, 399. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Y.; Zhao, X.; Song, Y. A Timed Colored Petri Net Simulation-Based Self-Adaptive Collaboration Method for Production-Logistics Systems. Appl. Sci. 2017, 7, 235. [Google Scholar] [CrossRef]
- Hsu, H.; Wang, C.; Chou, C.; Lee, Y.; Wen, Y. Modeling and Solving the Three Seaside Operational Problems Using an Object-Oriented and Timed Predicate/Transition Net. Appl. Sci. 2017, 7, 218. [Google Scholar] [CrossRef]
- Mailloux, L.; Grimaila, M.; Hodson, D.; Engle, R.; McLaughlin, C.; Baumgartner, G. Modeling, Simulation, and Performance Analysis of Decoy State Enabled Quantum Key Distribution Systems. Appl. Sci. 2017, 7, 212. [Google Scholar] [CrossRef]
- Drakaki, M.; Tzionas, P. Manufacturing Scheduling Using Colored Petri Nets and Reinforcement Learning. Appl. Sci. 2017, 7, 136. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, J.; Qin, W. A Genetic Regulatory Network-Based Method for Dynamic Hybrid Flow Shop Scheduling with Uncertain Processing Times. Appl. Sci. 2017, 7, 23. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhou, M.; Wu, N.; Huang, Y.-s. Special Issue on Modeling, Simulation, Operation and Control of Discrete Event Systems. Appl. Sci. 2018, 8, 202. https://doi.org/10.3390/app8020202
Li Z, Zhou M, Wu N, Huang Y-s. Special Issue on Modeling, Simulation, Operation and Control of Discrete Event Systems. Applied Sciences. 2018; 8(2):202. https://doi.org/10.3390/app8020202
Chicago/Turabian StyleLi, Zhiwu, Mengchu Zhou, Naiqi Wu, and Yi-sheng Huang. 2018. "Special Issue on Modeling, Simulation, Operation and Control of Discrete Event Systems" Applied Sciences 8, no. 2: 202. https://doi.org/10.3390/app8020202
APA StyleLi, Z., Zhou, M., Wu, N., & Huang, Y.-s. (2018). Special Issue on Modeling, Simulation, Operation and Control of Discrete Event Systems. Applied Sciences, 8(2), 202. https://doi.org/10.3390/app8020202