Correlation between Gait Asymmetry and Leg Length Discrepancy—What Is the Role of Clinical Abnormalities?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Data Reduction and Analysis
2.4. Statistical Analysis and Interpretation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Walsh, M.; Connolly, P.; Jenkinson, A.; O’Brien, T. Leg length discrepancy—An experimental study of compensatory changes in three dimensions using gait analysis. Gait Posture 2000, 12, 156–161. [Google Scholar] [CrossRef]
- Baylis, W.J.; Rzonca, E.C. Functional and structural limb length discrepancies: Evaluation and treatment. Clin. Podiatr. Med. Surg. 1988, 5, 509–520. [Google Scholar] [PubMed]
- Resende, R.A.; Kirkwood, R.N.; Deluzio, K.J.; Cabral, S.; Fonseca, S.T. Biomechanical strategies implemented to compensate for mild leg length discrepancy during gait. Gait Posture 2016, 46, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Resende, R.A.; Kirkwood, R.N.; Deluzio, K.J.; Morton, A.M.; Fonseca, S.T. Mild leg length discrepancy affects lower limbs, pelvis and trunk biomechanics of individuals with knee osteoarthritis during gait. Clin. Biomech. 2016, 38, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Eek, M.N.; Zugner, R.; Stefansdottir, I.; Tranberg, R. Kinematic gait pattern in children with cerebral palsy and leg length discrepancy: Effects of an extra sole. Gait Posture 2017, 55, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Khamis, S.; Carmeli, E. Relationship and significance of gait deviations associated with limb length discrepancy: A systematic review. Gait Posture 2017, 57, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Khamis, S.; Carmeli, E. The effect of simulated leg length discrepancy on lower limb biomechanics during gait. Gait Posture 2017, 61, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Song, K.M.; Halliday, S.E.; Little, D.G. The effect of limb-length discrepancy on gait. J Bone Jt. Surg. Am. Vol. 1997, 79, 1690–1698. [Google Scholar] [CrossRef]
- Seeley, M.K.; Umberger, B.R.; Clasey, J.L.; Shapiro, R. The relation between mild leg-length inequality and able-bodied gait asymmetry. J. Sports Sci. Med. 2010, 9, 572–579. [Google Scholar] [PubMed]
- Khamis, S.; Carmeli, E. A new concept for measuring leg length discrepancy. J. Orthop. 2017, 14, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Khamis, S.; Danino, B.; Hayek, S.; Carmeli, E. Measuring clearance mechanics based on dynamic leg length. Meas. Phys. Educ. Exerc. Sci. 2017, 22, 1–9. [Google Scholar] [CrossRef]
- Jamaluddin, S.; Sulaiman, A.R.; Imran, M.K.; Juhara, H.; Ezane, M.A.; Nordin, S. Reliability and accuracy of the tape measurement method with a nearest reading of 5 mm in the assessment of leg length discrepancy. Singap. Med. J. 2011, 52, 681–684. [Google Scholar]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 1990, 8, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, R.B.; Ounpuu, S.; Tyburski, D.; Gage, J.R. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 1991, 10, 575–587. [Google Scholar] [CrossRef]
- Wervey, R.; Schwartz, M. A new device for improving foot marker alignment. In Proceedings of the 8th Annual GCMAS Meeting 2003, Wilmington, DE, USA, 7–10 May 2003. [Google Scholar]
- Segev, E.; Hemo, Y.; Wientroub, S.; Ovadia, D.; Fishkin, M.; Steinberg, D.M.; Hayek, S. Intra- and interobserver reliability analysis of digital radiographic measurements for pediatric orthopedic parameters using a novel pacs integrated computer software program. J. Child. Orthop. 2010, 4, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, U.; Sherman, A. Muscle strength grading. In Statpearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2017. [Google Scholar]
- Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified ashworth scale of muscle spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wu, B.; Abbott, T.; Fishman, D.; McMurray, W.; Mor, G.; Stone, K.; Ward, D.; Williams, K.; Zhao, H. Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 2003, 19, 1636–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaggs, D.L.; Rethlefsen, S.A.; Kay, R.M.; Dennis, S.W.; Reynolds, R.A.; Tolo, V.T. Variability in gait analysis interpretation. J. Pediatr. Orthop. 2000, 20, 759–764. [Google Scholar] [CrossRef] [PubMed]
Diagnoses | Clinical Findings | Anatomic LLD (Lt-Rt) | |
---|---|---|---|
1 | Right femoral and pelvic fractures | Contractures: Right Thomas Test 20°, Right hip flexion 70°, Hip abduction (hip at 0) −10°, Hip internal rotation (hip at 0) 15°, Hip external rotation (hip at 0) 5°, Right dorsi flexion (knee at 0/knee at 90) 0°/10°. Strength: Right hip abductors 2/5, right hip extensors 3/5 | 2 mm |
2 | Left hip dysplasia | Contractures: Bilateral Thomas Test 10° and hip abduction (hip at 90) 25°, Left dorsi flexion (knee at 0/knee at 90) −15°/−15°. | −29 mm |
3 | Left proximal tibia resection and endoprosthesis reconstruction | Contractures: Left knee flexion 75°, left knee extension 40°. Strength: Left knee extensor 3/5. | −10 mm |
4 | Left DEGA acetabuloplasty and pelvic osteotomy | Contractures: Left hip extension 10°, hip flexion 90°, hip abduction (hip at 0) 15°, internal rotation (hip at 0) 0°. Strength: Left hip abductors 2/5. | −6 mm |
5 | Paralytic right foot | Contractures: Right dorsi flexion (knee at 0/knee at 90) 5°/5°, Right plantar flexion 25°. | 11 mm |
6 | Left tibial plateau fracture | Contractures: Right knee extension −10°, right genu varum 20°. | −3 mm |
7 | Intercalary resection of the left femur and reconstruction | Contractures: Left Thomas Test 5°, left knee flexion 120°, rectus femoris 80°. Strength: Left hip abductors 3/5. | −5 mm |
8 | Left distal femur resection and endoprosthesis reconstruction | Contractures: Left knee flexion 100°, left rectus femoris 100°, left dorsi flexion (knee at 0/knee at 90) −5°/−5°. Strength: Left hip abductors 4/5, left knee extensors 3/5. | −5 mm |
9 | Bilateral knee and right hip osteoarthrosis | Contractures: Right Thomas Test 20°, right hip flexion 80°, right hip abduction (hip at 0/hip at 90) −10°,0°. Strength: Left hip abductors 3/5, left hip extensor 4/5. | −2 mm |
10 | CP right hemiplegia | Contractures: Right Thomas Test 5°, hip abduction bilaterally (hip at 0) 35°, dorsi flexion (knee at 0/knee at 90) 5°/10°. Strength: Right dorsi flexors 2/5, right planar flexors 3/5, inversion 2/5, eversion 2/5. | 19 mm |
11 | CP right hemiplegia | Contractures: Right Thomas Test 10°, right knee extension −5°, dorsi flexion (knee at 0/knee at 90) −5°/0°. Strength: Right hip abduction 4/5, right dorsi flexors 0/5, right plantar flexors 0/5, right invertors 0/5, evertors 0/5. | 39 mm |
12 | Arteriovenous malformation in the right FHL and soleus muscles | Contractures: Right SLR 20°, right dorsi flexion (knee at 0/knee at 90) 0°/0°. Strength: Right dorsi flexors 3/5. | 9 mm |
13 | CP left hemiplegia, bilateral knee osteoarthritis | Contractures: Left SLR 35°, left Thomas Test 20°, left hip adduction (Hip at 0) 0, left popliteal angle 55°. Strength: Left plantar flexor 3/5, left hip abductors 3/5. | 6 mm |
14 | Right hemiplegia | Contractures: Right Thomas Test 5°, right hip abduction (Hip at 0) 40°, knee hyperextension 20°, dorsi flexion right (knee at 0/knee at 90) 10°/10°, right hyperpronated foot. Strength: Right dorsi flexors 4/5. | 36 mm |
15 | Right hemipelvectomy | Contractures: Right hip flexion 100°, right Thomas Test 10°, right hip abduction (hip at 0/hip at 90) 35°/45°, right knee flexion 120°, right rectus femoris 120°, right dorsi flexion (knee at 0/knee at 90) −5°/0°. Strength: Plantar flexors 2/5. | −3 mm |
16 | Left club foot | Contractures: Left Dorsi flexion (knee at 0/knee at 90) 0°/30°, limited subtalar inversion. Strength: Plantar flexors 3/5. | −22 mm |
17 | Left subtalar arthrodesis | Contractures: Left Dorsi flexion (knee at 0/knee at 90) −20°/−20°, no subtalar movement. Strength: Plantar flexors 3/5. | −8 mm |
Kinematics | Gait Events |
---|---|
Pelvic obliquity | Mid-stance, mid-swing |
Hip flexion-extension | Initial contact, terminal stance, mid-swing |
Hip adduction-abduction | Mid-swing |
Knee flexion-extension | Initial contact, mid-stance, terminal stance, mid-swing |
Ankle dorsi-plantar flexion | Initial contact, mid-stance, terminal stance, mid-swing, foot off |
Group Classification According to X-ray | True Classification | False Classification | |
---|---|---|---|
Confusion Matrices | |||
Group A | Longer right | 4 | 2 |
Longer left | 8 | 1 | |
Total | 12 | 3 | |
Group B | Longer right | 8 | 2 |
Longer left | 3 | 4 | |
Total | 11 | 6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamis, S.; Danino, B.; Ovadia, D.; Carmeli, E. Correlation between Gait Asymmetry and Leg Length Discrepancy—What Is the Role of Clinical Abnormalities? Appl. Sci. 2018, 8, 1979. https://doi.org/10.3390/app8101979
Khamis S, Danino B, Ovadia D, Carmeli E. Correlation between Gait Asymmetry and Leg Length Discrepancy—What Is the Role of Clinical Abnormalities? Applied Sciences. 2018; 8(10):1979. https://doi.org/10.3390/app8101979
Chicago/Turabian StyleKhamis, Sam, Barry Danino, Dror Ovadia, and Eli Carmeli. 2018. "Correlation between Gait Asymmetry and Leg Length Discrepancy—What Is the Role of Clinical Abnormalities?" Applied Sciences 8, no. 10: 1979. https://doi.org/10.3390/app8101979
APA StyleKhamis, S., Danino, B., Ovadia, D., & Carmeli, E. (2018). Correlation between Gait Asymmetry and Leg Length Discrepancy—What Is the Role of Clinical Abnormalities? Applied Sciences, 8(10), 1979. https://doi.org/10.3390/app8101979