Fast Object Detection in Light Field Imaging by Integrating Deep Learning with Defocusing
Abstract
:1. Introduction
2. Methodology
2.1. Two-Plane Parametrization of Light Field
2.2. Digtal Refocusing
2.3. Object Detection and Defocus Response
2.4. Refinement of the Depth Estimation
3. Experimental Results
3.1. Benchmark Dataset Experiment
3.2. Real Word Experiment
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Kim, S.; Yuseok, B.; Sangyoun, L. Face liveness detection using a light field camera. Sensors 2014, 14, 22471–22499. [Google Scholar] [CrossRef] [PubMed]
- Karabegovic, I.; Vojic, S.; Dolecek, V. 3D vision in industrial robot working process. In Proceedings of the 2006 12th International Power Electronics and Motion Control Conference, Portoroz, Slovenia, 30 August–1 September 2006; pp. 1223–1226. [Google Scholar]
- Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 2002, 47, 7–42. [Google Scholar] [CrossRef]
- Georgiev, T.; Lumsdaine, A. Focused plenoptic camera and rendering. J. Electron. Imaging 2010, 19, 021106. [Google Scholar]
- Ng, R. Digital Light Field Photography. Ph.D. Dissertation, Department of Computer Science, Stanford University, Stanford, CA, USA, 2006. [Google Scholar]
- THE LIGHT L16 CAMERA. Available online: https://light.co/camera (accessed on 14 November 2017).
- LYTRO SUPPORT. Available online: https://illum.lytro.com/zh/ (accessed on 14 November 2017).
- Levoy, M.; Hanrahan, P. Light field rendering. In Proceedings of the International Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 31–42. [Google Scholar]
- Dansereau, D.G.; Pizarro, O.; Williams, S.B. Decoding, calibration and rectification for lenselet-based plenoptic cameras. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1027–1034. [Google Scholar]
- Adhikarla, V.K.; Sodnik, J.; Szolgay, P. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller. Sensors 2015, 15, 8642–8663. [Google Scholar] [CrossRef] [PubMed]
- Wanner, S.; Goldluecke, B. Globally consistent depth labeling of 4D light fields. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 41–48. [Google Scholar]
- Wang, T.; Efros, A.A.; Ramamoorthi, R. Occlusion-aware depth estimation using light-field cameras. In Proceedings of the 2015 IEEE Conference on International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3487–3495. [Google Scholar]
- Jeon, H.; Park, J.; Choe, G.; Park, J.; Bok, Y.; Tai, Y.; Kweon, I.S. Accurate depth map estimation from a lenslet light field camera. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1547–1555. [Google Scholar]
- Nayar, S.K.; Watanabe, M.; Noguchi, M. Real-time focus range sensor. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 1186–1198. [Google Scholar] [CrossRef]
- Subbarao, M.; Liu, Y.F. Accurate reconstruction of three-dimensional shape and focused image from a sequence of noisy defocused images. Proc. SPIE Three Dimens. Imaging Laser-Based Syst. Metrol. Insp II 1996, 2909, 178–191. [Google Scholar]
- Watanabe, M.; Nayar, S.K. Rational filters for passive depth from defocus. Int. J. Comput. Vis. 1998, 27, 203–225. [Google Scholar] [CrossRef]
- Tao, W.; Hadap, S.; Malik, J.; Ramamoorthi, R. Depth from combining defocus and correspondence using light field cameras. In Proceedings of the 2013 IEEE Conference on IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 673–680. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You only look once: unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137. [Google Scholar] [CrossRef] [PubMed]
- IMAGENET. Available online: http://www.image-net.org/ (accessed on 15 December 2017).
- THE PASCAL VISUAL OBJECT CLASSES HOMEPAGE. Available online: http://host.robots.ox.ac.uk/pascal/VOC/voc2007/index.html (accessed on 15 December 2017).
Object | Views | Resolution | Percentage of Inaccurate Matching | |
---|---|---|---|---|
Binocular Stereo | Multi-View Stereo | |||
Mona | 9 × 9 | 93 × 453 | 3% | 1% |
Ball | 9 × 9 | 190 × 181 | 57% | 52% |
Flowerpot | 9 × 9 | 113 × 95 | 39% | 5% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, M.; Liu, R.; Hong, H.; Ren, J.; Xiao, G. Fast Object Detection in Light Field Imaging by Integrating Deep Learning with Defocusing. Appl. Sci. 2017, 7, 1309. https://doi.org/10.3390/app7121309
Ren M, Liu R, Hong H, Ren J, Xiao G. Fast Object Detection in Light Field Imaging by Integrating Deep Learning with Defocusing. Applied Sciences. 2017; 7(12):1309. https://doi.org/10.3390/app7121309
Chicago/Turabian StyleRen, Mingjun, Runxing Liu, Haibo Hong, Jieji Ren, and Gaobo Xiao. 2017. "Fast Object Detection in Light Field Imaging by Integrating Deep Learning with Defocusing" Applied Sciences 7, no. 12: 1309. https://doi.org/10.3390/app7121309
APA StyleRen, M., Liu, R., Hong, H., Ren, J., & Xiao, G. (2017). Fast Object Detection in Light Field Imaging by Integrating Deep Learning with Defocusing. Applied Sciences, 7(12), 1309. https://doi.org/10.3390/app7121309