Robust Visual Localization with Dynamic Uncertainty Management in Omnidirectional SLAM
Abstract
1. Introduction
2. Monocular Omnidirectional System
2.1. Epipolarity Adaption Definitions
3. Robust Visual Localization
3.1. Dynamic Uncertainty Management
3.2. Bayesian Regression
3.3. System Workflow
- (i)
- omnidirectional image acquisition, .
- (ii)
- multi-scaled distribution: projection of a 3D point, , establishes the seed for a multi-scaled distribution, .
- (iii)
- EKF prior extracted for motion prediction, hence point appearance prediction on the second image according to . Dynamic uncertainty management by propagating R∼N() and T∼N(), thus accounting for the current innovation , as the uncertainty metric.
- (iv)
- Bayesian regression computed as per Equations (10)–(13), to produce weighting coefficients for the final matching over a predicted epipolar search area on the next image, .
4. Robust Localization within Omnidirectional SLAM
Observation Model
5. Results
5.1. Robust Localization Results
5.2. Omnidirectional SLAM Results
5.3. Comparison Results
6. Discussion
- (i)
- Robust visual localization technique in terms of accuracy and performance.
- (ii)
- Significant increase of usable visual data (matchings) when standard techniques fail to gather reliable visual data.
- (iii)
- Acceptable tradeoff solution to produce real-time localization.
- (iv)
- Consistent SLAM estimation with the proposed robust localization technique for real-time-oriented tasks.
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SLAM | Simultaneous Localization and Mapping |
IMU | Inertial Measurement Unit |
UAV | Unmanned Aerial Vehicle |
FEM | Finite Element Method |
CCD | Charge Coupled Device |
KL | Kullback–Leibler divergence |
EKF | Extended Kalman Filter |
SVD | Single Value Decomposition |
RMSE | Root Mean Square Error |
References
- Huang, S.; Dissanayake, G. Convergence and Consistency Analysis for Extended Kalman Filter Based SLAM. IEEE Trans. Robot. 2007, 23, 1036–1049. [Google Scholar] [CrossRef]
- Leonard, J.; Newman, P. Consistent, convergent, and constant-time SLAM. In Proceedings of the 18th International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9–15 August 2003; pp. 1143–1150. [Google Scholar]
- Leung, C.; Huang, S.; Dissanayake, G. Active SLAM in structured environments. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 1898–1903. [Google Scholar]
- Cole, D.; Newman, P. Using laser range data for 3D SLAM in outdoor environments. In Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 1556–1563. [Google Scholar]
- Wang, T.; Wu, Y.; Liang, J.; Han, C.; Chen, J.; Zhao, Q. Analysis and Experimental Kinematics of a Skid-Steering Wheeled Robot Based on a Laser Scanner Sensor. Sensors 2015, 15, 9681–9702. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Song, J.B. A new sonar salient feature structure for EKF-based SLAM. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 5966–5971. [Google Scholar]
- Guadarrama, S.; Ruiz-Mayor, A. Approximate robotic mapping from sonar data by modeling perceptions with antonyms. Inf. Sci. 2010, 180, 4164–4188. [Google Scholar] [CrossRef]
- Niu, X.; Tong, Y.; Tang, J.; Chang, L. An Online Solution of LiDAR Scan Matching Aided Inertial Navigation System for Indoor Mobile Mapping. J. Sens. 2017, 2017, 4802159. [Google Scholar] [CrossRef]
- Cain, C.; Leonessa, A. FastSLAM Using Compressed Occupancy Grids. J. Sens. 2016, 2016, 3891865. [Google Scholar] [CrossRef]
- Li, J.; Zhong, R.; Hu, Q.; Ai, M. Feature-Based Laser Scan Matching and Its Application for Indoor Mapping. Sensors 2016, 16, 1265. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Şekercioğlu, Y.A.; Drummond, T. Vision-Based Cooperative Pose Estimation for Localization in Multi-Robot Systems Equipped with RGB-D Cameras. Robotics 2015, 4, 1–22. [Google Scholar] [CrossRef]
- Chávez-Aragón, A.; Macknojia, R.; Payeur, P.; Laganiere, R. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance. J. Sens. 2013, 2013, 832963. [Google Scholar] [CrossRef]
- Chow, J.C.; Lichti, D.D.; Hol, J.D.; Bellusci, G.; Luinge, H. IMU and Multiple RGB-D Camera Fusion for Assisting Indoor Stop-and-Go 3D Terrestrial Laser Scanning. Robotics 2014, 3, 247–280. [Google Scholar] [CrossRef]
- Ryu, J.; Gankhuyag, G.; Chong, K. Navigation System Heading and Position Accuracy Improvement through GPS and INS Data Fusion. J. Sens. 2016, 2016, 7942963. [Google Scholar] [CrossRef]
- López, E.; García, S.; Barea, R.; Bergasa, L.M.; Molinos, E.J.; Arroyo, R.; Romera, E.; Pardo, S. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments. Sensors 2017, 17, 802. [Google Scholar]
- Munguia, R.; Urzua, S.; Bolea, Y.; Grau, A. Vision-Based SLAM System for Unmanned Aerial Vehicles. Sensors 2016, 16, 372. [Google Scholar] [CrossRef] [PubMed]
- Recoskie, S.; Lanteigne, E.; Gueaieb, W. A High-Fidelity Energy Efficient Path Planner for Unmanned Airships. Robotics 2017, 6, 28. [Google Scholar] [CrossRef]
- Joly, C.; Rives, P. Bearing-only SAM using a minimal inverse depth parametrization. In Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics, Madeira, Portugal, 15–18 June 2010; Volume 2, pp. 281–288. [Google Scholar]
- Civera, J.; Davison, A.J.; Martínez Montiel, J.M. Inverse Depth Parametrization for Monocular SLAM. IEEE Trans. Robot. 2008, 24, 932–945. [Google Scholar] [CrossRef]
- Engel, J.; Stuckler, J.; Cremers, D. Large-scale direct SLAM with stereo cameras. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 1935–1942. [Google Scholar]
- Guerra, E.; Munguia, R.; Grau, A. Monocular SLAM for Autonomous Robots with Enhanced Features Initialization. Sensors 2014, 14, 6317–6337. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Nuske, S.; Scherer, S. A Multi-Sensor Fusion MAV State Estimation from Long-Range Stereo, IMU, GPS and Barometric Sensors. Sensors 2017, 17, 11. [Google Scholar] [CrossRef] [PubMed]
- Caruso, D.; Engel, J.; Cremers, D. Large-scale direct SLAM for omnidirectional cameras. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 141–148. [Google Scholar]
- Paya, L.; Amoros, F.; Fernandez, L.; Reinoso, O. Performance of Global-Appearance Descriptors in Map Building and Localization Using Omnidirectional Vision. Sensors 2014, 14, 3033–3064. [Google Scholar] [CrossRef] [PubMed]
- Paya, L.; Reinoso, O.; Jimenez, L.M.; Julia, M. Estimating the position and orientation of a mobile robot with respect to a trajectory using omnidirectional imaging and global appearance. PLoS ONE 2017, 12, 0175938. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Xiang, Z. Design and analysis of a novel omnidirectional stereovision system. In Proceedings of the 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya, Japan, 8–12 May 2017; pp. 63–66. [Google Scholar]
- Shuang, Y.; Baoyuan, C.; Lei, Z.; Xiaoyang, Y.; Haibin, W.; Jixun, Z.; Deyun, C. Encoded light image active feature matching approach in binocular stereo vision. In Proceedings of the 2016 11th International Forum on Strategic Technology (IFOST), Novosibirsk, Russia, 1–3 June 2016; pp. 406–409. [Google Scholar]
- Yaojun, L.; Quan, P.; Chunhui, Z.; Feng, Y. Scene matching based EKF-SLAM visual navigation. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012; pp. 5094–5099. [Google Scholar]
- Brand, C.; Schuster, M.J.; Hirschmuller, H.; Suppa, M. Submap matching for stereo-vision based indoor/outdoor SLAM. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 5670–5677. [Google Scholar]
- Lowe, D. Object Recognition from Local Scale-Invariant Features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; pp. 1150–1157. [Google Scholar]
- Lowe, D. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Valiente, D.; Gil, A.; Fernandez, L.; Reinoso, O. A modified stochastic gradient descent algorithm for view-based SLAM using omnidirectional images. Inf. Sci. 2014, 279, 326–337. [Google Scholar] [CrossRef]
- Valiente, D.; Gil, A.; Fernández, L.; Reinoso, Ó. Visual SLAM Based on Single Omnidirectional Views. In Informatics in Control, Automation and Robotics, Proceedings of the 9th International Conference, ICINCO 2012, Rome, Italy, 28–31 July 2012; Revised Selected Papers; Springer International Publishing: Cham, Switzerland, 2014; pp. 131–146. [Google Scholar]
- Davison, A.J.; Gonzalez Cid, Y.; Kita, N. Real-Time 3D SLAM with Wide-Angle Vision. In Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, 5–7 July 2004; pp. 117–124. [Google Scholar]
- Valiente, D.; Gil, A.; Fernandez, L.; Reinoso, O. A comparison of EKF and SGD applied to a view-based SLAM approach with omnidirectional images. Robot. Auton. Syst. 2014, 62, 108–119. [Google Scholar] [CrossRef]
- Davison, A.J. Real-Time Simultaneous Localisation and Mapping with a Single Camera. In Proceedings of the Ninth IEEE International Conference on Computer Vision, Washington, DC, USA, 13–16 October 2003; Volume 2, pp. 1403–1410. [Google Scholar]
- Olson, D.; Leonard, J.; Teller, S. Fast Iterative Optimization of Pose Graphs with Poor Initial Estimates. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Orlando, FL, USA, 15–19 May 2006; pp. 2262–2269. [Google Scholar]
- Grisetti, G.; Stachniss, C.; Burgard, W. Non-linear Constraint Network Optimization for Efficient Map Learning. IEEE Trans. Intell. Transp. Syst. 2009, 10, 428–439. [Google Scholar] [CrossRef]
- Rituerto, A.; Puig, L.; Guerrero, J.J. Visual SLAM with an Omnidirectional Camera. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 348–351. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive Computation and Machine Learning series, Massachusetts Institute of Technology; University Press Group Ltd.: Bognor Regis, UK, 2006; pp. 1–266. [Google Scholar]
- Ghaffari Jadidi, M.; Valls Miro, J.; Valencia, R.; Andrade-Cetto, J. Exploration on Continuous Gaussian Process Frontier Maps. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 6077–6082. [Google Scholar]
- Agudo, A.; Moreno-Noguer, F.; Calvo, B.; Montiel, J.M.M. Sequential Non-Rigid Structure from Motion Using Physical Priors. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 979–994. [Google Scholar] [CrossRef] [PubMed]
- Agudo, A.; Moreno-Noguer, F.; Calvo, B.; Montiel, J. Real-time 3D reconstruction of non-rigid shapes with a single moving camera. Comput. Vis. Image Underst. 2016, 153, 37–54. [Google Scholar] [CrossRef]
- Alcantarilla, P.F.; Bergasa, L.M.; Dellaert, F. Visual odometry priors for robust EKF-SLAM. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 3501–3506. [Google Scholar]
- Kang, J.G.; Choi, W.S.; An, S.Y.; Oh, S.Y. Augmented EKF based SLAM method for improving the accuracy of the feature map. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 3725–3731. [Google Scholar]
- Oriolo, G.; Paolillo, A.; Rosa, L.; Vendittelli, M. Humanoid odometric localization integrating kinematic, inertial and visual information. Auton. Robot. 2016, 40, 867–879. [Google Scholar] [CrossRef]
- Civera, J.; Grasa, O.G.; Davison, A.J.; Montiel, J.M.M. 1-point RANSAC for EKF-based Structure from Motion. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 3498–3504. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Longuet-Higgins, H.C. A computer algorithm for reconstructing a scene from two projections. Nature 1985, 293, 133–135. [Google Scholar] [CrossRef]
- Servos, J.; Smart, M.; Waslander, S. Underwater stereo SLAM with refraction correction. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013; pp. 3350–3355. [Google Scholar]
- Brown, M.Z.; Burschka, D.; Hager, G.D. Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 993–1008. [Google Scholar] [CrossRef]
- Scaramuzza, D.; Martinelli, A.; Siegwart, R. A Toolbox for Easily Calibrating Omnidirectional Cameras. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 5695–5701. [Google Scholar]
- McLachlan, G. Discriminant Analysis and Statistical Pattern Recognition; Wiley Series in Probability an Statistics; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kulback, S.; Leiber, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Gil, A.; Valiente, D.; Fernández, L.; Marin, J. Building Visual Maps With a Single Omnidirectional Camera. In Proceedings of the International Conference on Informatics in Control, Automation and Robotics, Noordwijkerhout, The Netherlands, 28–31 July 2011; pp. 145–154. [Google Scholar]
- Bay, H.; Tuytelaars, T.; Van Gool, L. Speeded Up Robust Features. Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar]
- Gil, A.; Reinoso, O.; Ballesta, M.; Juliá, M.; Payá, L. Estimation of Visual Maps with a Robot Network Equipped with Vision Sensors. Sensors 2010, 10, 5209–5232. [Google Scholar] [CrossRef] [PubMed]
- ARVC: Automation, Robotics and Computer Vision Research Group. Miguel Hernandez University. OMnidiectional Image Dataset in a Laboratory at Innova Building. Available online: http://arvc.umh.es/db/images/lab_trajectory/ (accessed on 1 December 2012).
- ARVC: Automation, Robotics and Computer Vision Research Group. Miguel Hernandez University. Omnidiectional Image dataset at Innova Building. Available online: http://arvc.umh.es/db/images/innova_trajectory/ (accessed on 1 December 2012).
- Fontana, G.; Matteucci, M.; Sorrenti, D.G. Rawseeds: Building a Benchmarking Toolkit for Autonomous Robotics. In Methods and Experimental Techniques in Computer Engineering; Springer International Publishing: Cham, Switzerland, 2014; pp. 55–68. [Google Scholar]
- The Rawseeds Project: Public Multisensor Benchmarking Dataset. Available online: http://www.rawseeds.org (accessed on 1 December 2012).
- Civera, J.; Grasa, O.G.; Davison, A.J.; Montiel, J.M.M. 1-Point RANSAC for extended Kalman filtering: Application to real-time structure from motion and visual odometry. J. Field Robot. 2010, 27, 609–631. [Google Scholar] [CrossRef]
- Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating System. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Workshop on Open Source Robotics, Singapore, 29 May–3 June 2017. [Google Scholar]
- Ceriani, S.; Fontana, G.; Giusti, A.; Marzorati, D.; Matteucci, M.; Migliore, D.; Rizzi, D.; Sorrenti, D.G.; Taddei, P. Rawseeds ground truth collection systems for indoor self-localization and mapping. Auton. Robot. 2009, 27, 353. [Google Scholar] [CrossRef]
Filter-Based SLAM Stages | ||
---|---|---|
State | Expression | Terms |
Prediction | = f() | : control input-current state relation |
= h() | : control input, initial prediction seed | |
: observation-current relation | ||
: uncertainty covariance | ||
Innovation | : camera covariance noise | |
: odometer covariance noise | ||
: Jacobian of at | ||
: Jacobian of at | ||
: observation measurement | ||
: innovation measurement | ||
: innovation covariance |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valiente, D.; Gil, A.; Payá, L.; Sebastián, J.M.; Reinoso, Ó. Robust Visual Localization with Dynamic Uncertainty Management in Omnidirectional SLAM. Appl. Sci. 2017, 7, 1294. https://doi.org/10.3390/app7121294
Valiente D, Gil A, Payá L, Sebastián JM, Reinoso Ó. Robust Visual Localization with Dynamic Uncertainty Management in Omnidirectional SLAM. Applied Sciences. 2017; 7(12):1294. https://doi.org/10.3390/app7121294
Chicago/Turabian StyleValiente, David, Arturo Gil, Luis Payá, Jose M. Sebastián, and Óscar Reinoso. 2017. "Robust Visual Localization with Dynamic Uncertainty Management in Omnidirectional SLAM" Applied Sciences 7, no. 12: 1294. https://doi.org/10.3390/app7121294
APA StyleValiente, D., Gil, A., Payá, L., Sebastián, J. M., & Reinoso, Ó. (2017). Robust Visual Localization with Dynamic Uncertainty Management in Omnidirectional SLAM. Applied Sciences, 7(12), 1294. https://doi.org/10.3390/app7121294