Characterization and Use of Construction and Demolition Waste from South of Brazil in the Production of Foamed Concrete Blocks
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of the CDW
2.3. Experimental Design
2.4. Characterization of Foamed Concrete Cylindrical Blocks
3. Results
3.1. Characterization of CDW
3.2. Compressive Strength—CS
3.3. Dry (DBD) and Wet (WBD) Bulk Density
3.4. Water Absorption (WA)
3.5. Air Void (AV) Investigation
4. Conclusions
- CDW can be used as an aggregate in the manufacture of foamed concrete blocks, reducing the liabilities of construction civil companies and reducing environmental impacts due to the irregular disposal of this waste. Also, with the use of this residue, it is possible to reduce the consumption of natural sand, which is a finite aggregate and its extraction causes environmental damages, mainly in riverbeds and lakes.
- The results of the CDW characterization show that the granulometry and the chemical composition were suitable for the development of foamed concrete. It is relevant to note that CDW was used only with the sifting process. According to the Brazilian standard NBR 7211, the CDW with medium distribution granulometry is the most appropriate for the development of cellular concrete blocks. The chemical elements, densities, fineness modulus, and swelling found in the CDW from Passo Fundo, RS region resemble the CDW of other Brazil regions.
- For the concrete blocks developed, foam amount and CDW granulometry had significant influences on compressive strength, dry and wet density, water absorption, and air voids. Foam amount was the independent variable with the highest influence on dependent variables. However, in order to improve the properties of foamed concrete blocks, other proportions of foams may be studied, and also the addition of additives in the concrete may be made with greater compressive strength. In this way, the concrete blocks can be competitive with concrete blocks already marketed.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bravo, M.; Santos Silva, A.; de Brito, J.; Evangelista, L. Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants. Microsc. Microanal. 2016, 22, 149–167. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Torgal, F.; Tam, V.W.Y.; Labrincha, J.A.; Ding, Y.; de Brito, J. Handbook of Recycled Concrete and Demolition Waste; Woodhead Publishing Limited: West Conshohocken, CA, USA, 2013; p. 663. [Google Scholar]
- Kumar, R. Influence of recycled coarse aggregate derived from construction and demolition waste (CDW) on abrasion resistance of pavement concrete. Constr. Build. Mater. 2017, 142, 248–255. [Google Scholar] [CrossRef]
- European Commission. EU Construction & Demolition Waste Management Protocol. 2016. Available online: http://ec.europa.eu/growth/content/eu-construction-and-demolition-waste-protocol-0_en (accessed on 10 october 2017).
- Böhmer, S.; Moser, G.; Neubauer, C.; Peltoniemi, M.; Schachermayer, E.; Tesar, M.; Walter, B.; Winter, B. Aggregates Case Study; Final Report; Umweltbundesamt: Vienna, Austria, 2008; Available online: http://www.sarmaproject.eu/uploads/media/JRC_Aggregates_FinalRep_UBA_080331.pdf (accessed on 23 July 2017).
- Li, T.; Xiao, J.; Zhu, C.; Zhong, Z. Experimental study on mechanical behaviors of concrete with large-size recycled coarse aggregate. Constr. Build. Mater. 2016, 120, 321–328. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.; Duan, H.; Ouyang, L.; Huang, W.; Zuo, J. An innovative approach to managing demolition waste via GIS (geographic information system): A case study in Shenzhen city, China. J. Clean. Prod. 2016, 112, 494–503. [Google Scholar] [CrossRef]
- ABRELPE. Panorama dos Resíduos Sólidos no Brasil 2015; Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais (ABRELPE): São Paulo, Brasil, 2015; Available online: http://www.abrelpe.org.br/panorama_edicoes.cfm (accessed on 10 July 2017).
- Miranda, L.F.R.; Angulo, S.C.; Careli, É.D. A reciclagem de resíduos de construção e demolição no Brasil: 1986–2008. Ambient. Construído 2009, 9, 57–71. [Google Scholar]
- Bernardes, A.; Thomé, A.; Prietto, P.D.M.; de Abreu, Á.G. Quantificação e classificação dos resíduos da construção e demolição coletados no município de Passo Fundo, RS. Ambient. Construído 2008, 8, 65–76. [Google Scholar]
- Freitas, I.M. Os Resíduos de Construção Civil no Município de Araraquara/Sp; Centro Universitário de Araraquara—UNIARA: Araraquara, São Paulo, Brasil, 2009. [Google Scholar]
- PMPF. Prefeitura Busca Interessados Para Iniciar Programa Habitacional. Secretaria de Comunicação Social, Prefeitura Municipal de Passo Fundo (PMPF): Passo Fundo, Brazil, 2014. Available online: http://www.pmpf.rs.gov.br/interna.php?t=19&c=11&i=8035 (accessed on 20 August 2017).
- Ulsen, C.; Kahn, H.; Hawlitschek, G.; Masini, E.A.; Angulo, S.C.; John, V.M. Production of recycled sand from construction and demolition waste. Constr. Build. Mater. 2013, 40, 1168–1173. [Google Scholar] [CrossRef]
- Angulo, S.C.; Teixeira, C.E.; de Castro, A.L.; Nogueira, T.P. Resíduos de construção e demolição: Avaliação de métodos de quantificação. Engenharia Sanitaria e Ambiental 2011, 16, 299–306. [Google Scholar] [CrossRef]
- CONAMA. Resolução nº 307, de 05 de Julho de 2002: Estabelece Diretrizes, Critérios e Procedimentos Para a Gestão dos Resíduos da Construção Civil; Conselho Nacional do Meio Ambiente (CONAMA), Ministério do Meio Ambiente: Brasília, Brazil, 2002. Available online: http://www.mma.gov.br/estruturas/a3p/_arquivos/36_09102008030504.pdf (accessed on 20 August 2017).
- Cardoso, R.; Silva, R.V.; de Brito, J.; Dhir, R. Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Manag. 2016, 49, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Martín-Morales, M.; Zamorano, M.; Ruiz-Moyano, A.; Valverde-Espinosa, I. Characterization of recycled aggregates construction and demolition waste for concrete production following the Spanish Structural Concrete Code EHE-08. Constr. Build. Mater. 2011, 25, 742–748. [Google Scholar] [CrossRef]
- Jones, R.; Zheng, L.; Yerramala, A.; Rao, K.S. Use of recycled and secondary aggregates in foamed concretes. Mag. Concr. Res. 2012, 64, 513–525. [Google Scholar] [CrossRef]
- Saiz Martínez, P.; González Cortina, M.; Fernández Martínez, F.; Rodríguez Sánchez, A. Comparative study of three types of fine recycled aggregates from construction and demolition waste (CDW), and their use in masonry mortar fabrication. J. Clean. Prod. 2016, 118, 162–169. [Google Scholar] [CrossRef]
- Poon, C.-S.; Chan, D. Effects of contaminants on the properties of concrete paving blocks prepared with recycled concrete aggregates. Constr. Build. Mater. 2007, 21, 164–175. [Google Scholar] [CrossRef]
- Jones, M.; McCarthy, A.; Dhir, R. Recycled and Secondary Aggregates in Foamed Concrete. Project Code: DTI/WRAP Agregates Research Programme STBF 13/13C; The Waste & Resources Action Programme. 2005. Available online: https://slideblast.com/recycled-and-secondary-aggregates-in-foamed-concrete-wrap_594ca6fa1723dd7b7ba6de0b.html (accessed on 12 August 2017).
- Levy, S.; Helène, P. Durability of concrete mixed with fine recycled aggregates. Exacta 2007, 5, 25–34. [Google Scholar] [CrossRef]
- Gomes, P.C.C.; de Alencar, T.F.F.; Silva, N.V.d.; de Moraes, K.A.M.; Angulo, S.C. Obtenção de concreto leve utilizando agregados reciclados. Ambient. Construído 2015, 15, 31–46. [Google Scholar] [CrossRef]
- Lamond, J.F.; Pielert, J.H. Significance of Tests and Properties of Concrete and Concrete-Making Materials; ASTM: Montgomery, PA, USA, 2006. [Google Scholar]
- Hernández-Zaragoza, J.B.; López-Lara, T.; Horta-Rangel, J.; López-Cajún, C.; Rojas-González, E.; García-Rodríguez, F.; Adue, J. Cellular concrete bricks with recycled expanded polystyrene aggregate. Adv. Mater. Sci. Eng. 2013, 2013, 160162. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Kunhanandan Nambiar, E.K.; Indu Siva Ranjani, G. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Qu, X.; Zhao, X. Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete—A review. Constr. Build. Mater. 2017, 135, 505–516. [Google Scholar] [CrossRef]
- Richard, A.O.; Ramli, M. Experimental production of sustainable lightweight foamed concrete. Br. J. Appl. Sci. Technol. 2013, 3, 994. [Google Scholar] [CrossRef]
- Oikonomou, N.D. Recycled concrete aggregates. Cem. Concr. Compos. 2005, 27, 315–318. [Google Scholar] [CrossRef]
- Pedro, R.; Tubino, R.; Anversa, J.; De Col, D.; Lermen, R.; Silva, R. Production of Aerated Foamed Concrete with Industrial Waste from the Gems and Jewels Sector of Rio Grande do Sul-Brazil. Appl. Sci. 2017, 7, 985. [Google Scholar] [CrossRef]
- ABNT. NBR NM 248—Agregados—Determinação da Omposição Granulométrica; Associação Brasileira De Normas Técnicas: São Paulo, Brasil, 2003. [Google Scholar]
- ABNT. NBR 9776—Agregados—Determinação da Massa Específica de Agregados Miúdos por Meio do Frasco Chapman; Associação Brasileira de Normas Técnicas: São Paulo, Brasil, 1987. [Google Scholar]
- ABNT. NBR 6467—Agregados—Determinação do Inchamento de Agregado Miúdo—Método de Ensaio; Associação Brasileira de Normas Técnicas: São Paulo, Brasil, 2006. [Google Scholar]
- ABNT. NBR 5739—Concreto—Ensaio de Compressão de Corpos-de-Prova Cilindricos; Associação Brasileira de Normas Técnicas: São Paulo, Brasil, 2007. [Google Scholar]
- ASTM. C 948-81. Standard—Dry And Wet Bulk Density, Water Absorption and Apparent Porosity of Thin Sections of Glass-Fiber Reinforced Concrete; American Society for Testing and Materials: West Conshohocken, PA, USA, 2009. [Google Scholar]
- ABNT. NBR 9778—Argamassa e Concreto Endurecidos—Determinação da Absorção de Água por Imersão—Índice de Vazios e Massa Específica; Associação Brasileira de Normas Técnicas: São Paulo, Brasil, 1987. [Google Scholar]
- British Standards Institution. BS 480-11. Admixtures for Concrete, Mortar and Grout-Test Methods-Part 11: Determination of Air Void Characteristics in Hardened Concrete; British Standards Institution: London, UK, 2005. [Google Scholar]
- Hilal, A.A.; Thom, N.H.; Dawson, A.R. On void structure and strength of foamed concrete made without/with additives. Constr. Build. Mater. 2015, 85, 157–164. [Google Scholar] [CrossRef]
- Nambiar, E.K.K.; Ramamurthy, K. Air-void characterisation of foam concrete. Cem. Concr. Compos. 2007, 37, 221–230. [Google Scholar] [CrossRef]
- Yang, Z.; Huddleston, J.; Brown, H. Effects of Wood Ash on Properties of Concrete and Flowable Fill. J. Mater. Sci. Chem. Eng. 2016, 4, 101–114. [Google Scholar] [CrossRef]
- Babu, D.S.; Ganesh Babu, K.; Tiong-Huan, W. Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete. Cem. Concr. Compos. 2006, 28, 520–527. [Google Scholar] [CrossRef]
- Laukaitis, A.; Žurauskas, R.; Keriene, J. The effect of foam polystyrene granules on cement composite properties. Cem. Concr. Compos. 2005, 27, 41–47. [Google Scholar] [CrossRef]
- Corinaldesi, V.; Gnappi, G.; Moriconi, G.; Montenero, A. Reuse of ground waste glass as aggregate for mortars. Waste Manag. 2005, 25, 197–201. [Google Scholar] [CrossRef] [PubMed]
- ABNT. NBR 7211—Agregados para Concreto—Especificação; Associação Brasileira de Normas Técnicas: São Paulo, Brasil, 2005. [Google Scholar]
- De Fonseca, F.B. Desempenho Estrutural de Paredes de Alvenaria de Blocos de Concreto de Agregados Reciclados de Rejeitos de Construção e Demolição; Universidade de São Paulo—USP: São Carlos, Brasil, 2002. [Google Scholar]
- Ulsen, C.; Kahn, H.; Angulo, S.C.; John, V.M. Composição química de agregados mistos de resíduos de construção e demolição do Estado de São Paulo. REM: Revista Escola Minas 2010, 63, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Angulo, S.C.; Ulsen, C.; John, V.M.; Kahn, H.; Cincotto, M.A. Chemical-mineralogical characterization of C&D waste recycled aggregates from Sao Paulo, Brazil. Waste Manag. 2009, 29, 721–730. [Google Scholar] [PubMed]
- Silva, M.B.d.L.e. Novos Materiais à Base de Resíduos de Construção e Demolição (Rcd) e Resíduos de Produção de cal (Rpc) para uso na Construção Civil; Universidade Federal do Paraná: Curitiba, Brazil, 2014. [Google Scholar]
- Haach, V.G.; Vasconcelos, G.; Lourenço, P.B. Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Constr. Build. Mater. 2011, 25, 2980–2987. [Google Scholar] [CrossRef] [Green Version]
- Nambiar, E.K.K.; Ramamurthy, K. Models relating mixture composition to the density and strength of foam concrete using response surface methodology. Cem. Concr. Compos. 2006, 28, 752–760. [Google Scholar] [CrossRef]
- ABNT. NBR 13438—Blocos de Concreto Celular Autoclavado—Requisitos; Associação Brasileira de Normas Técnica: São Paulo, Brasil, 2013. [Google Scholar]
- Krämer, C.; Schauerte, M.; Kowald, T.L.; Trettin, R.H. Three-phase-foams for foam concrete application. Mater. Charact. 2015, 102, 173–179. [Google Scholar] [CrossRef]
- Hilal, A.A.; Thom, N.H.; Dawson, A.R. Failure mechanism of foamed concrete made with/without additives and lightweight aggregate. J. Adv. Concr. Technol. 2016, 14, 511–520. [Google Scholar] [CrossRef]
- Nambiar, E.K.K.; Ramamurthy, K. Sorption characteristics of foam concrete. Cem. Concr. Res. 2007, 37, 1341–1347. [Google Scholar] [CrossRef]
Order | Cement Amount (g) | Water Amount (g) | CDW Amount (g) | CDW Granulometry | Foam Amount (g) | Foam (% of Total Mass) | W/C Ratio |
---|---|---|---|---|---|---|---|
1 | 500 | 271 | 500 | Fine | 50 | 3.8 | 0.64 |
2 | 500 | 251.4 | 500 | Fine | 70 | 5.3 | 0.64 |
3 | 500 | 231.8 | 500 | Fine | 90 | 6.7 | 0.64 |
4 | 500 | 212.2 | 500 | Fine | 110 | 8.1 | 0.64 |
5 | 500 | 271 | 500 | Medium | 50 | 3.8 | 0.64 |
6 | 500 | 251.4 | 500 | Medium | 70 | 5.3 | 0.64 |
7 | 500 | 231.8 | 500 | Medium | 90 | 6.7 | 0.64 |
8 | 500 | 212.2 | 500 | Medium | 110 | 8.1 | 0.64 |
9 | 500 | 271 | 500 | Coarse | 50 | 3.8 | 0.64 |
10 | 500 | 251.4 | 500 | Coarse | 70 | 5.3 | 0.64 |
11 | 500 | 231.8 | 500 | Coarse | 90 | 6.7 | 0.64 |
12 | 500 | 212.2 | 500 | Coarse | 110 | 8.1 | 0.64 |
Oxides | CDWs Residue Granulometry | ||
---|---|---|---|
Fine | Medium | Coarse | |
SiO2 | 78.38 | 77.75 | 73.05 |
Al2O3 | 3.39 | 3.74 | 4.83 |
TiO2 | 0.24 | 0.23 | 0.35 |
Fe2O3 | 1.30 | 1.39 | 1.96 |
MnO | 0.06 | 0.05 | 0.06 |
MgO | 1.23 | 1.23 | 1.38 |
CaO | 6.53 | 6.72 | 8.43 |
Na2O | Nd | Nd | Nd |
K2O | 0.84 | 0.93 | 1.15 |
P2O6 | 0.06 | 0.04 | 0.06 |
SO4 | 1.02 | 0.79 | 1.02 |
LOI | 6.96 | 7.13 | 7.71 |
Total | 100.0 | 100.0 | 100.0 |
Factor | Degrees of Freedom | Sum of Squares | Mean of Squares | F-Value | p-Value | Percent Contribution |
---|---|---|---|---|---|---|
CDW granulometry (CDWG) | 2 | 4.0905 | 2.0453 | 14.873 | 0.0001 | 15 |
Foam amount (FA) | 3 | 19.3912 | 6.4637 | 47.004 | 0.0000 | 71 |
Interaction between CDWA and FA | 6 | 0.6304 | 0.1051 | 0.764 | 0.6053 | 2 |
Error | 24 | 3.3003 | 0.1375 | 12 | ||
Total | 35 | 27.4124 | 100 |
Factor | Degrees of Freedom | Sum of Squares | Mean of Squares | F-Value | p-Value | Percent Contribution |
---|---|---|---|---|---|---|
CDW granulometry (CDWG) | 2 | 51,367 | 25,683 | 85.55 | 0.0000 | 10 |
Foam amount (FA) | 3 | 440,010 | 146,670 | 488.57 | 0.0000 | 81 |
Interaction between CDWG and FA | 6 | 41,163 | 6860 | 22.85 | 0.0000 | 8 |
Error | 24 | 7205 | 300 | 1 | ||
Total | 35 | 539,744 | 100 |
Factor | Degrees of Freedom | Sum of Squares | Mean of Squares | F-Value | p-Value | Percent Contribution |
---|---|---|---|---|---|---|
CDW granulometry (CDWG) | 2 | 87,120 | 43,560 | 146.8 | 0.0000 | 45 |
Foam amount (FA) | 3 | 67,239 | 22,413 | 75.5 | 0.0000 | 35 |
Interaction between CDWG and FA | 6 | 31,670 | 5278 | 17.8 | 0.0000 | 16 |
Error | 24 | 7122 | 297 | 4 | ||
Total | 35 | 193,151 | 100 |
Factor | Degrees of Freedom | Sum of Squares | Mean of Squares | F-Value | p-Value | Percent Contribution |
---|---|---|---|---|---|---|
CDW granulometry (CDWG) | 2 | 153.4 | 76.7 | 6.66 | 0.0050 | 1 |
Foam amount (FA) | 3 | 12,308.3 | 4102.8 | 356.19 | 0.0000 | 87 |
Interaction between CDWG and FA | 6 | 1396.0 | 232.7 | 20.20 | 0.0000 | 10 |
Error | 24 | 276.4 | 11.5 | 2 | ||
Total | 35 | 14,134.1 | 100 |
Factor | Degrees of Freedom | Sum of Squares | Mean of Squares | F-Value | p-Value | Percent Contribution |
---|---|---|---|---|---|---|
CDW granulometry (CDWG) | 2 | 110.21 | 55.11 | 30.87 | 0.0000 | 4 |
Foam amount (FA) | 3 | 2135.52 | 711.84 | 398.76 | 0.0000 | 78 |
Interaction between CDWG and FA | 6 | 457.40 | 76.23 | 42.70 | 0.0000 | 17 |
Error | 24 | 42.84 | 1.79 | 1 | ||
Total | 35 | 2745.97 | 100 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Favaretto, P.; Hidalgo, G.E.N.; Sampaio, C.H.; Silva, R.D.A.; Lermen, R.T. Characterization and Use of Construction and Demolition Waste from South of Brazil in the Production of Foamed Concrete Blocks. Appl. Sci. 2017, 7, 1090. https://doi.org/10.3390/app7101090
Favaretto P, Hidalgo GEN, Sampaio CH, Silva RDA, Lermen RT. Characterization and Use of Construction and Demolition Waste from South of Brazil in the Production of Foamed Concrete Blocks. Applied Sciences. 2017; 7(10):1090. https://doi.org/10.3390/app7101090
Chicago/Turabian StyleFavaretto, Patrícia, Gelsa Edith Navarro Hidalgo, Carlos Hoffmann Sampaio, Rodrigo De Almeida Silva, and Richard Thomas Lermen. 2017. "Characterization and Use of Construction and Demolition Waste from South of Brazil in the Production of Foamed Concrete Blocks" Applied Sciences 7, no. 10: 1090. https://doi.org/10.3390/app7101090
APA StyleFavaretto, P., Hidalgo, G. E. N., Sampaio, C. H., Silva, R. D. A., & Lermen, R. T. (2017). Characterization and Use of Construction and Demolition Waste from South of Brazil in the Production of Foamed Concrete Blocks. Applied Sciences, 7(10), 1090. https://doi.org/10.3390/app7101090