Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics
Abstract
:1. Introduction
2. Experimental Section
2.1. Principle
2.2. Experimental Considerations
3. Results
3.1. Spatio-Temporal Dynamics of Raman Fibre Lasers
3.2. Spatio-Temporal Dynamics of Partially Mode Locked Fibre Lasers
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Grelu, P.; Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photonics 2012, 6, 84–92. [Google Scholar] [CrossRef]
- Chouli, S.; Grelu, P. Rains of solitons in a fiber laser. Opt. Express 2009, 17, 11776–11781. [Google Scholar] [CrossRef] [PubMed]
- Chouli, S.; Grelu, P. Soliton rains in a fiber laser: An experimental study. Phys. Rev. A 2010, 81, 063829. [Google Scholar] [CrossRef]
- Stratmann, M.; Pagel, T.; Mitschke, F. Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 2005, 95, 143902. [Google Scholar] [CrossRef] [PubMed]
- Cundiff, S.T.; Soto-Crespo, J.M.; Akhmediev, N. Experimental evidence for soliton explosions. Phys. Rev. Lett. 2002, 88, 073903. [Google Scholar] [CrossRef] [PubMed]
- Runge, A.F.J.; Broderick, N.G.R.; Erkintalo, M. Observation of soliton explosions in a passively mode-locked fiber laser. Optica 2015, 2, 36–39. [Google Scholar] [CrossRef]
- Runge, A.F.J.; Broderick, N.G.R.; Erkintalo, M. Dynamics of soliton explosions in passively mode-locked fiber lasers. J. Opt. Soc. Am. B 2016, 33, 46–53. [Google Scholar] [CrossRef]
- Kärtner, F.X.; Zumbühl, D.M.; Matuschek, N. Turbulence in mode-locked lasers. Phys. Rev. Lett. 1999, 82, 4428–4431. [Google Scholar] [CrossRef]
- Babin, S.A.; Churkin, D.V.; Ismagulov, A.E.; Kablukov, S.I.; Podivilov, E.V. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser. J. Opt. Soc. Am. B 2007, 24, 1729–1738. [Google Scholar] [CrossRef]
- Babin, S.A.; Churkin, D.V.; Ismagulov, A.E.; Kablukov, S.I.; Podivilov, E.V. Turbulence-induced square-root broadening of the Raman fiber laser output spectrum. Opt. Lett. 2008, 33, 633–635. [Google Scholar] [CrossRef] [PubMed]
- Wabnitz, S. Optical turbulence in fiber lasers. Opt. Lett. 2014, 39, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- Picozzi, A.; Garnier, J.; Hansson, T.; Suret, P.; Randoux, S.; Millot, G.; Christodoulides, D. Optical wave turbulence: Towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics. Phys. Rep. 2014, 542, 1–132. [Google Scholar] [CrossRef]
- Randoux, S.; Walczak, P.; Onorato, M.; Suret, P. Intermittency in integrable turbulence. Phys. Rev. Lett. 2014, 113, 113902. [Google Scholar] [CrossRef] [PubMed]
- Walczak, P.; Randoux, S.; Suret, P. Optical Rogue Waves in integrable turbulence. Phys. Rev. Lett. 2015, 114, 143903. [Google Scholar] [CrossRef] [PubMed]
- Walczak, P.; Randoux, S.; Suret, P. Statistics of a turbulent Raman fiber laser. Opt. Lett. 2015, 40, 3101–3104. [Google Scholar] [CrossRef] [PubMed]
- Lecaplain, C.; Grelu, P.; Soto-Crespo, J.M.; Akhmediev, N. Dissipative Rogue Waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 2012, 108, 233901. [Google Scholar] [CrossRef] [PubMed]
- Runge, A.F.J.; Aguergaray, C.; Broderick, N.G.R.; Erkintalo, M. Raman rogue waves in a partially mode-locked fiber laser. Opt. Lett. 2014, 39, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Lecaplain, C.; Grelu, P. Rogue waves among noiselike-pulse laser emission: An experimental investigation. Phys. Rev. A 2014, 90, 013805. [Google Scholar] [CrossRef]
- Churkin, D.V.; Gorbunov, O.A.; Smirnov, S.V. Extreme value statistics in Raman fiber lasers. Opt. Lett. 2011, 36, 3617–3619. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.M.; Dias, F.; Erkintalo, M.; Genty, G. Instabilities, breathers and rogue waves in optics. Nat. Photonics 2014, 8, 755–764. [Google Scholar] [CrossRef]
- Chen, S.; Baronio, F.; Soto-Crespo, J.; Grelu, P.; Conforti, M.; Wabnitz, S. Optical rogue waves in parametric three-wave mixing and coherent stimulated scattering. Phys. Rev. A 2015, 92, 033847. [Google Scholar] [CrossRef]
- Kane, D.; Trebino, R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. 1993, 29, 571–579. [Google Scholar] [CrossRef]
- Kane, D.J.; Trebino, R. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating. Opt. Lett. 1993, 18, 823–825. [Google Scholar] [CrossRef] [PubMed]
- Garbin, B.; Javaloyes, J.; Tissoni, G.; Barland, S. Topological solitons as addressable phase bits in a driven laser. Nat. Commun. 2015, 6, 5915. [Google Scholar] [CrossRef] [PubMed]
- Goda, K.; Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 2013, 7, 102–112. [Google Scholar] [CrossRef]
- Butler, T.; Slepneva, S.; O’Shaughnessy, B.; Kelleher, B.; Goulding, D.; Hegarty, S.P.; Lyu, H.C.; Karnowski, K.; Wojtkowski, M.; Huyet, G. Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers. Opt. Lett. 2015, 40, 2277–2280. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Pang, M.; Russell, P.S. Wideband-tunable soliton fiber laser mode-locked at 1.88 GHz by optoacoustic interactions in solid-core PCF. Opt. Express 2015, 23, 24945–24954. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, O.A.; Sugavanam, S.; Churkin, D. Revealing statistical properties of quasi-CW fibre lasers in bandwidth-limited measurements. Opt. Express 2014, 22, 28071–28076. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, O.A.; Sugavanam, S.; Churkin, D.V. Intensity dynamics and statistical properties of random distributed feedback fiber laser. Opt. Lett. 2015, 40, 1783–1786. [Google Scholar] [CrossRef] [PubMed]
- Solli, D.R.; Ropers, C.; Koonath, P.; Jalali, B. Optical rogue waves. Nature 2007, 450, 1054–1057. [Google Scholar] [CrossRef] [PubMed]
- Randoux, S.; Suret, P. Experimental evidence of extreme value statistics in Raman fiber lasers. Opt. Lett. 2012, 37, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Turitsyna, E.G.; Smirnov, S.V.; Sugavanam, S.; Tarasov, N.; Shu, X.; Babin, S.A.; Podivilov, E.V.; Churkin, D.V.; Falkovich, G.; Turitsyn, S.K. The laminar-turbulent transition in a fibre laser. Nat. Photonics 2013, 7, 783–786. [Google Scholar] [CrossRef]
- Churkin, D.V.; Sugavanam, S.; Tarasov, N.; Khorev, S.; Smirnov, S.V.; Kobtsev, S.M.; Turitsyn, S.K. Stochasticity, periodicity and localized light structures in partially mode-locked fibre lasers. Nat. Commun. 2015, 6, 7004. [Google Scholar] [CrossRef] [PubMed]
- Hess, O.; Kuhn, T. Maxwell-Bloch equations for spatially inhomogeneous semiconductor lasers. II. Spatiotemporal dynamics. Phys. Rev. A 1996, 54, 3360–3368. [Google Scholar] [CrossRef] [PubMed]
- Fischer, I.; Hess, O.; Elsäßer, W.; Göbel, E. Complex spatio-temporal dynamics in the near-field of a broad-area semiconductor laser. Europhys. Lett. 1996, 35, 579. [Google Scholar] [CrossRef]
- Mulet, J.; Balle, S. Transverse mode dynamics in vertical-cavity surface-emitting lasers: Spatiotemporal versus modal expansion descriptions. Phys. Rev. A 2002, 66, 053802. [Google Scholar] [CrossRef]
- Paulau, P.V.; Gomila, D.; Ackemann, T.; Loiko, N.A.; Firth, W.J. Self-localized structures in vertical-cavity surface-emitting lasers with external feedback. Phys. Rev. E 2008, 78, 016212. [Google Scholar] [CrossRef] [PubMed]
- Oppo, G.L.; Brambilla, M.; Lugiato, L.A. Formation and evolution of roll patterns in optical parametric oscillators. Phys. Rev. A 1994, 49, 2028–2032. [Google Scholar] [CrossRef] [PubMed]
- Anstett, G.; Nittmann, M.; Wallenstein, R. Experimental investigation and numerical simulation of the spatio-temporal dynamics of the light-pulses in nanosecond optical parametric oscillators. Appl. Phys. B 2004, 79, 305–313. [Google Scholar] [CrossRef]
- Tredicce, J.R.; Quel, E.J.; Ghazzawi, A.M.; Green, C.; Pernigo, M.A.; Narducci, L.M.; Lugiato, L.A. Spatial and temporal instabilities in a CO2 laser. Phys. Rev. Lett. 1989, 62, 1274–1277. [Google Scholar] [CrossRef] [PubMed]
- Huyet, G.; Rica, S. Spatio-temporal instabilities in the transverse patterns of lasers. Physica D 1996, 96, 215–229. [Google Scholar] [CrossRef]
- Huyet, G.; Martinoni, M.C.; Tredicce, J.R.; Rica, S. Spatiotemporal dynamics of lasers with a large fresnel number. Phys. Rev. Lett. 1995, 75, 4027–4030. [Google Scholar] [CrossRef] [PubMed]
- Stutzki, F.; Otto, H.J.; Jansen, F.; Gaida, C.; Jauregui, C.; Limpert, J.; Tünnermann, A. High-speed modal decomposition of mode instabilities in high-power fiber lasers. Opt. Lett. 2011, 36, 4572–4574. [Google Scholar] [CrossRef] [PubMed]
- Otto, H.J.; Stutzki, F.; Jansen, F.; Eidam, T.; Jauregui, C.; Limpert, J.; Tünnermann, A. Temporal dynamics of mode instabilities in high-power fiber lasers and amplifiers. Opt. Express 2012, 20, 15710–15722. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Potter, W.N.; Thompson, J.R. Stochastic, spatiotemporal intensity dynamics of stimulated Brillouin scattering in a two-mode optical fiber. J. Opt. Soc. Am. B 2013, 30, 2676–2683. [Google Scholar] [CrossRef]
- Armstrong, C.R.; David, J.A.; Thompson, J.R. Phenomenological model of stochastic, spatiotemporal, intensity dynamics of stimulated Brillouin scattering in a two-mode optical fiber. Opt. Express 2015, 23, 17866–17882. [Google Scholar] [CrossRef] [PubMed]
- Dudley, J.M.; Genty, G.; Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 78, 1135–1184. [Google Scholar] [CrossRef]
- Zaviyalov, A.; Iliew, R.; Egorov, O.; Lederer, F. Multi-soliton complexes in mode-locked fiber lasers. Appl. Phys. B 2011, 104, 513–521. [Google Scholar] [CrossRef]
- Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J.M. The Peregrine soliton in nonlinear fibre optics. Nat. Phys. 2010, 6, 790–795. [Google Scholar] [CrossRef]
- Olivier, M.; Roy, V.; Piché, M.; Babin, F. Pulse collisions in the stretched-pulse fiber laser. Opt. Lett. 2004, 29, 1461–1463. [Google Scholar] [CrossRef] [PubMed]
- Roy, V.; Olivier, M.; Piché, M. Pulse interactions in the stretched-pulse fiber laser. Opt. Express 2005, 13, 9217–9223. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.K.; Erkintalo, M.; Murdoch, S.G.; Coen, S. Ultraweak long-range interactions of solitons observed over astronomical distances. Nat. Photonics 2013, 7, 657–663. [Google Scholar] [CrossRef]
- Kobtsev, S.; Kukarin, S.; Smirnov, S.; Turitsyn, S.; Latkin, A. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Opt. Express 2009, 17, 20707–20713. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, S.; Kobtsev, S.; Kukarin, S.; Ivanenko, A. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation. Opt. Express 2012, 20, 27447–27453. [Google Scholar] [CrossRef] [PubMed]
- Rulliere, C. Femtosecond Laser Pulses; Springer: Berlin, Germany, 2005. [Google Scholar]
- Ania-Castañón, J.D. Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings. Opt. Express 2004, 12, 4372–4377. [Google Scholar] [CrossRef] [PubMed]
- Churkin, D.; Smirnov, S. Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers. Opt. Commun. 2012, 285, 2154–2160. [Google Scholar] [CrossRef]
- Turitsyn, S.K.; Ania-Castañón, J.D.; Babin, S.A.; Karalekas, V.; Harper, P.; Churkin, D.; Kablukov, S.I.; El-Taher, A.E.; Podivilov, E.V.; Mezentsev, V.K. 270-km ultralong Raman fiber laser. Phys. Rev. Lett. 2009, 103, 133901. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, S.V.; Tarasov, N.; Churkin, D.V. Radiation build-up in laminar and turbulent regimes in quasi-CW Raman fiber laser. Opt. Express 2015, 23, 27606–27611. [Google Scholar] [CrossRef] [PubMed]
- Kobtsev, S.; Kukarin, S.; Fedotov, Y. Ultra-low repetition rate mode-locked fiber laser with high-energy pulses. Opt. Express 2008, 16, 21936–21941. [Google Scholar] [CrossRef] [PubMed]
- Ania-Castañón, J.D.; Karalekas, V.; Harper, P.; Turitsyn, S.K. Simultaneous spatial and spectral transparency in ultralong fiber lasers. Phys. Rev. Lett. 2008, 101, 123903. [Google Scholar] [CrossRef] [PubMed]
- El-Taher, A.; Kotlicki, O.; Harper, P.; Turitsyn, S.; Scheuer, J. Secure key distribution over a 500 km long link using a Raman ultra-long fiber laser. Laser Photonics Rev. 2014, 8, 436–442. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, H.; Cui, S.; Hu, J.; Feng, Y. Versatile Raman fiber laser for sodium laser guide star. Laser Photonics Rev. 2014, 8, 889–895. [Google Scholar] [CrossRef]
- Turitsyna, E.G.; Turitsyn, S.K.; Mezentsev, V.K. Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser. Opt. Express 2010, 18, 4469–4477. [Google Scholar] [CrossRef] [PubMed]
- Tarasov, N.; Sugavanam, S.; Churkin, D. Spatio-temporal generation regimes in quasi-CW Raman fiber lasers. Opt. Express 2015, 23, 24189–24194. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, S.V.; Churkin, D.V. Modeling of spectral and statistical properties of a random distributed feedback fiber laser. Opt. Express 2013, 21, 21236–21241. [Google Scholar] [CrossRef] [PubMed]
- Baronio, F.; Degasperis, A.; Conforti, M.; Wabnitz, S. Solutions of the vector nonlinear schrödinger equations: Evidence for deterministic rogue waves. Phys. Rev. Lett. 2012, 109, 044102. [Google Scholar] [CrossRef] [PubMed]
- Sugavanam, S.; Tarasov, N.; Wabnitz, S.; Churkin, D.V. Ginzburg-Landau turbulence in quasi-CW Raman fiber lasers. Laser Photonics Rev. 2015, 9, L35–L39. [Google Scholar] [CrossRef]
- Chong, A.; Renninger, W.H.; Wise, F.W. All-normal-dispersion femtosecond fiber laser with pulse energy above 20nJ. Opt. Lett. 2007, 32, 2408–2410. [Google Scholar] [CrossRef] [PubMed]
- Renninger, W.H.; Chong, A.; Wise, F.W. Dissipative solitons in normal-dispersion fiber lasers. Phys. Rev. A 2008, 77, 023814. [Google Scholar] [CrossRef]
- Renninger, W.H.; Chong, A.; Wise, F.W. Self-similar pulse evolution in an all-normal-dispersion laser. Phys. Rev. A 2010, 82, 021805. [Google Scholar] [CrossRef] [PubMed]
- Nyushkov, B.N.; Ivanenko, A.V.; Kobtsev, S.M.; Turitsyn, S.K.; Mou, C.; Zhang, L.; Denisov, V.I.; Pivtsov, V.S. Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation. Laser Phys. Lett. 2012, 9, 59–67. [Google Scholar] [CrossRef]
- Erkintalo, M.; Xu, Y.Q.; Murdoch, S.G.; Dudley, J.M.; Genty, G. Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs. Phys. Rev. Lett. 2012, 109, 223904. [Google Scholar] [CrossRef] [PubMed]
- Yulin, A.V.; Driben, R.; Malomed, B.A.; Skryabin, D.V. Soliton interaction mediated by cascaded four wave mixing with dispersive waves. Opt. Express 2013, 21, 14481–14486. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Zhao, L.; Zhao, B. Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser. Opt. Express 2005, 13, 2289–2294. [Google Scholar] [CrossRef] [PubMed]
- Lecaplain, C.; Grelu, P.; Soto-Crespo, J.M.; Akhmediev, N. Dissipative rogue waves: Extreme pulses generated by passively mode-locked lasers. Phys. Rev. E 2011, 84, 016604. [Google Scholar]
- Zaviyalov, A.; Egorov, O.; Iliew, R.; Lederer, F. Rogue waves in mode-locked fiber lasers. Phys. Rev. A 2012, 85, 013828. [Google Scholar] [CrossRef]
- Liu, M.; Cai, Z.R.; Hu, S.; Luo, A.P.; Zhao, C.J.; Zhang, H.; Xu, W.C.; Luo, Z.C. Dissipative rogue waves induced by long-range chaotic multi-pulse interactions in a fiber laser with a topological insulator-deposited microfiber photonic device. Opt. Lett. 2015, 40, 4467–4770. [Google Scholar]
- Liu, Z.; Zhang, S.; Wise, F.W. Rogue waves in a normal-dispersion fiber laser. Opt. Lett. 2015, 40, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- Kobtsev, S.; Smirnov, S.; Kukarin, S.; Turitsyn, S. Mode-locked fiber lasers with significant variability of generation regimes. Opt. Fiber Technol. 2014, 20, 615–620. [Google Scholar] [CrossRef]
- Avila, K.; Moxey, D.; de Lozar, A.; Avila, M.; Barkley, D.; Hof, B. The Onset of turbulence in pipe flow. Science 2011, 333, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, E.J.R.; Travers, J.C. Chirped pulse formation dynamics in ultra-long mode-locked fiber lasers. Opt. Lett. 2014, 39, 1398–1401. [Google Scholar] [CrossRef] [PubMed]
- Erkintalo, M.; Luo, K.; Jang, J.K.; Coen, S.; Murdoch, S.G. Bunching of temporal cavity solitons via forward Brillouin scattering. New J. Phys. 2015, 17, 115009. [Google Scholar] [CrossRef]
- Runge, A.F.J.; Aguergaray, C.; Broderick, N.G.R.; Erkintalo, M. Coherence and shot-to-shot spectral fluctuations in noise-like ultrafast fiber lasers. Opt. Lett. 2013, 38, 4327–4330. [Google Scholar] [CrossRef] [PubMed]
- Descloux, D.; Laporte, C.; Dherbecourt, J.B.; Melkonian, J.M.; Raybaut, M.; Drag, C.; Godard, A. Spectrotemporal dynamics of a picosecond OPO based on chirped quasi-phase-matching. Opt. Lett. 2015, 40, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Toenger, S.; Godin, T.; Billet, C.; Dias, F.; Erkintalo, M.; Genty, G.; Dudley, J.M. Emergent rogue wave structures and statistics in spontaneous modulation instability. Sci. Rep. 2015, 5, 10380. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugavanam, S.; Tarasov, N.; Churkin, D.V. Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics. Appl. Sci. 2016, 6, 65. https://doi.org/10.3390/app6030065
Sugavanam S, Tarasov N, Churkin DV. Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics. Applied Sciences. 2016; 6(3):65. https://doi.org/10.3390/app6030065
Chicago/Turabian StyleSugavanam, Srikanth, Nikita Tarasov, and Dmitry V. Churkin. 2016. "Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics" Applied Sciences 6, no. 3: 65. https://doi.org/10.3390/app6030065
APA StyleSugavanam, S., Tarasov, N., & Churkin, D. V. (2016). Real-Time Intensity Domain Characterization of Fibre Lasers Using Spatio-Temporal Dynamics. Applied Sciences, 6(3), 65. https://doi.org/10.3390/app6030065