Skip Content
You are currently on the new version of our website. Access the old version .
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

4 February 2026

Multi-Dimensional Detection Capability Analysis of Surface and Surface-to-Tunnel Transient Electromagnetic Methods Based on the Spectral Element Method

,
,
,
,
and
Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China
*
Authors to whom correspondence should be addressed.

Abstract

The transient electromagnetic (TEM) method is a key detection and monitoring technology for safe coal-mine production. Surface TEM depth penetration is limited by real geological conditions and transmitter–receiver hardware performance. Compared with the surface TEM method, the tunnel TEM method can enhance the depth of exploration to some extent, but it is constrained by the limited working space of the roadway, which makes it difficult to perform the area-wide and multi-line data acquisition, and thus the lateral detection resolution is directly compromised. Consequently, either surface or tunnel TEM alone suffers inherent limitations. The multidimensional surface and surface-to-tunnel TEM method employs a single large-loop transmitter and records electromagnetic (EM) signals both on the surface and in the tunnel, enabling joint data interpretation. The joint TEM observation method effectively addresses the limitations by using a single observation mode, with the goal of achieving high-precision detection. To investigate the detection capabilities of the joint surface and surface-to-tunnel TEM method, we propose a three-dimensional (3D) joint surface and surface-to-tunnel TEM forward modeling method based on the spectral element method (SEM). The SEM, using high-order vector basis functions, enables high-precision modeling of TEM responses with complex geo-electric earth models. The accuracy of the SEM is validated through comparisons with one-dimensional (1D) TEM semi-analytical solutions. To further reveal TEM response characteristics and multi-dimensional resolution under joint surface and tunnel detection modes, we construct several typical 3D geo-electric earth models and apply the SEM algorithm to simulate the TEM responses. We systematically analyze the horizontal and vertical resolution of 3D earth model targets at different decay times. The numerical results demonstrate that surface multi-line TEM surveying can accurately delineate the lateral extent of the target body, while vertical in-tunnel measurements are crucial for identifying the top and bottom interfaces of geological targets adjacent to the tunnel. Finally, the theoretical modeling results demonstrate that compared to individual TEM methods, the multi-dimensional joint surface and tunnel TEM observation yields superior target spatial information and markedly improves TEM detection efficacy under complex conditions. The 3D TEM forward modeling based on the SEM provides the theoretical foundation for subsequent 3D inversion and interpretation of surface-to-surface and surface-to-tunnel joint TEM data.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.