Abstract
Landslide risk assessment along high-altitude transportation corridors is critical for infrastructure resilience. This study presents an integrated framework combining Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) deformation data and machine learning (ML) to systematically identify and assess landslide susceptibility along the entire 245.5 km West Kunlun Highway. We first compiled a landslide inventory through visual interpretation and SBAS-InSAR analysis. Subsequently, fourteen causative factors were selected to construct and compare six ML models: random forest (RF), K-nearest neighbours (KNN), artificial neural network (ANN), gradient boosting decision trees (GBDT), support vector machine (SVM), and logistical regression (LR). Research findings indicate that along the Hotan–Kangziva Highway in the Western Kunlun Mountains, there exist 21 potential risk points for small-scale landslides, 12 for medium-scale landslides, and 5 for large-scale landslides, with hazard identification accuracy reaching 80%. The random forest model demonstrated outstanding performance, classifying areas with 5.10%, 4.55% and 4.96% probability as extremely high, high and medium susceptibility, respectively. This work provides a robust methodology and a high-accuracy assessment tool for landslide risk management in the data-scarce Western Kunlun Mountains.