Elaboration and Characterization of n-Type Organic Semiconductor (Fullerene C60) Deposed by Ultrasonic Technique for Sustainable OTFT Fabrication
Abstract
1. Introduction
2. Materials and Deposition Method
2.1. Chemical and Thin Film Preparation
2.2. Sample Characterization
3. Results and Discussion
3.1. X-Ray Diffraction
3.2. Infrared Spectroscopy
3.3. E-SEM and EDS Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Liu, Y.; Zhang, L.; Chow, P.C.; Wang, Z.; Zhang, G.; Ma, W.; Yan, H. A Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a Small Voltage Loss. J. Am. Chem. Soc. 2017, 139, 6298–6301. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Ye, L.; Hou, J.; Jang, B.; Han, G.; Cui, Y.; Su, G.M.; Wang, C.; Gao, B.; Yu, R.; et al. Achieving Highly Efficient Nonfullerene Organic Solar Cells with Improved Intermolecular Interaction and Open-Circuit Voltage. Adv. Mater. 2017, 29, 1700254. [Google Scholar] [CrossRef]
- Yu, S.; Kousseff, C.J.; Nielsen, C.B. n-Type semiconductors for organic electrochemical transistor applications. Synth. Met. 2023, 293, 117295. [Google Scholar] [CrossRef]
- Mei, J.; Diao, Y.; Appleton, A.L.; Fang, L.; Bao, Z. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors. J. Am. Chem. Soc. 2013, 135, 6724–6746. [Google Scholar] [CrossRef] [PubMed]
- Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Organic Semiconductors for Solution-Processable Field-Effect Transistors (OFETs). Angew. Chem. Int. Ed. 2008, 47, 4070–4098. [Google Scholar] [CrossRef] [PubMed]
- Savagian, L.R.; Österholm, A.M.; Ponder, J.F.; Barth, K.J.; Rivnay, J.; Reynolds, J.R. Balancing Charge Storage and Mobility in an Oligo(Ether) Functionalized Dioxythiophene Copolymer for Organic- and Aqueous- Based Electrochemical Devices and Transistors. Adv. Mater. 2018, 30, 1804647. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, Q.; Surendran, A.; Bottle, S.E.; Sonar, P.; Leong, W.L. Enhancing the Electrochemical Doping Efficiency in Diketopyrrolopyrrole-Based Polymer for Organic Electrochemical Transistors. Adv. Electron. Mater. 2021, 7, 2000701. [Google Scholar] [CrossRef]
- Jakher, S.; Yadav, R. Organic thin film transistor review based on their structures, materials, performance parameters, operating principle, and applications. Microelectron. Eng. 2024, 290, 112193. [Google Scholar] [CrossRef]
- Paquin, F.; Latini, G.; Sakowicz, M.; Karsenti, P.-L.; Wang, L.; Beljonne, D.; Stingelin, N.; Silva, C. Charge Separation in Semicrystalline Polymeric Semiconductors by Photoexcitation: Is the Mechanism Intrinsic or Extrinsic? Phys. Rev. Lett. 2011, 106, 197401. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y. Organic semiconductors for organic field-effect transistors. Sci. Technol. Adv. Mater. 2009, 10, 024313. [Google Scholar] [CrossRef] [PubMed]
- Jooq, M.K.Q.; Behbahani, F.; Moaiyeri, M.H. An ultra-efficient recycling folded cascode OTA based on GAA-CNTFET technology for MEMS/NEMS capacitive readout applications. AEU-Int. J. Electron. Commun. 2021, 136, 153773. [Google Scholar] [CrossRef]
- Jooq, M.K.Q.; Bozorgmehr, A.; Mirzakuchaki, S. An ultra-miniature broadband operational transconductance amplifier utilizing 10 nm wrap-gate CNTFET technology. Analog. Integr. Circuits Signal Process 2021, 107, 423–434. [Google Scholar] [CrossRef]
- Jooq, M.K.Q.; Moaiyeri, M.H.; Al-Shidaifat, A.; Song, H. Ultra-Efficient and Robust Auto-Nonvolatile Schmitt Trigger-Based Latch Design Using Ferroelectric CNTFET Technology. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 1829–1840. [Google Scholar] [CrossRef] [PubMed]
- Jooq, M.K.Q.; Azghadi, M.R.; Behbahani, F.; Al-Shidaifat, A.; Song, H. High-Performance and Energy-Efficient Leaky Integrate-and-Fire Neuron and Spike Timing-Dependent Plasticity Circuits in 7nm FinFET Technology. IEEE Access 2023, 11, 133451–133459. [Google Scholar] [CrossRef]
- Takebayashi, S.; Abe, S.; Saiki, K.; Ueno, K. Origin of the ambipolar operation of a pentacene field-effect transistor fabricated on a poly(vinyl alcohol)-coated Ta2O5 gate dielectric with Au source/drain electrodes. Appl. Phys. Lett. 2009, 94, 083305. [Google Scholar] [CrossRef]
- Dao, T.T.; Matsushima, T.; Murata, H. Organic nonvolatile memory transistors based on fullerene and an electron-trapping polymer. Org. Electron. 2012, 13, 2709–2715. [Google Scholar] [CrossRef]
- Hu, P.; He, X.; Jiang, H. Greater than 10 cm2 V−1 s−1: A breakthrough of organic semiconductors for field-effect transistors. InfoMat 2021, 3, 613–630. [Google Scholar] [CrossRef]
- Sun, H.; Vagin, M.; Wang, S.; Crispin, X.; Forchheimer, R.; Berggren, M.; Fabiano, S. Complementary Logic Circuits Based on High-Performance n-Type Organic Electrochemical Transistors. Adv. Mater. 2018, 30, 1704916. [Google Scholar] [CrossRef] [PubMed]
- Griggs, S.; Marks, A.; Bristow, H.; McCulloch, I. n-Type organic semiconducting polymers: Stability limitations, design considerations and applications. J. Mater. Chem. C Mater. 2021, 9, 8099–8128. [Google Scholar] [CrossRef]
- Buzea, C.; Pacheco, I. State-of-the-art of polymer/fullerene nanocomposites in biomedical field. In Polymer/Fullerene Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2023; pp. 211–250. [Google Scholar] [CrossRef]
- Teradal, N.L.; Jelinek, R. Carbon Nanomaterials in Biological Studies and Biomedicine. Adv. Healthc. Mater. 2017, 6, 1700574. [Google Scholar] [CrossRef] [PubMed]
- Shershakova, N.N.; Andreev, S.; Tomchuk, A.; Makarova, E.; Nikonova, A.; Turetskiy, E.; Petukhova, O.; Kamyshnikov, O.; Ivankov, O.; Kyzyma, O.; et al. Wound healing activity of aqueous dispersion of fullerene C60 produced by ‘green technology’. Nanomedicine 2023, 47, 102619. [Google Scholar] [CrossRef]
- Cataldo, F.; Da Ros, T. (Eds.) Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Prylutska, S.V.; Burlaka, A.P.; Prylutskyy, Y.I. Pristine C60 fullerenes inhibit the rate of tumor growth and metastasis. Exp. Oncol. 2011, 33, 162–164. [Google Scholar] [PubMed]
- Yang, X.L.; Fan, C.H.; Zhu, H.S. Photo-induced cytotoxicity of malonic acid [C60] fullerene derivatives and its mechanism. Toxicol. Vitr. 2002, 16, 41–46. [Google Scholar] [CrossRef]
- Samoilova, N.A.; Krayukhina, M.A.; Klemenkova, Z.S.; Naumkin, A.V.; Buzin, M.I.; Mezhuev, Y.O.; Turetsky, E.A.; Andreev, S.M.; Anuchina, N.M.; Popov, D.A. Hydrophilization and Functionalization of Fullerene C60 with Maleic Acid Copolymers by Forming a Non-Covalent Complex. Polymers 2024, 16, 1736. [Google Scholar] [CrossRef] [PubMed]
- Hebard, A.F.; Haddon, R.C.; Fleming, R.M.; Kortan, A.R. Deposition and characterization of fullerene films. Appl. Phys. Lett. 1991, 59, 2109–2111. [Google Scholar] [CrossRef]
- Taghavi, H.V.; Hirata, A. Deposition of unhydrogenated amorphous carbon films by sublimation of C60 fullerene in electron beam excited plasma. Mater. Lett. 2010, 64, 83–85. [Google Scholar] [CrossRef]
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Akter, T.; Barile, C.; Ahammad, A.J.S. Introduction and overview of carbon nanomaterial-based sensors for sustainable response. In Carbon Nanomaterials-Based Sensors; Elsevier: Amsterdam, The Netherlands, 2022; pp. 395–416. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Li, B.; Fu, L.; Yin, L.-W. One-step-spin-coating route for homogeneous perovskite/pyrrole-C60 fullerene bulk heterojunction for high performance solar cells. J. Power Sources 2019, 419, 27–34. [Google Scholar] [CrossRef]
- Chakik, M.; Bebe, S.; Prakash, R. Hydrogenated Graphene Based Organic Thin Film Transistor Sensor for Detection of Chloride Ions as Corrosion Precursors. Appl. Sci. 2022, 12, 863. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, S.; Sun, C.; Wang, T. Organic Thin Film Transistor for Effective Biomarker Detection in Early Disease Diagnosis. Chemosensors 2023, 11, 202. [Google Scholar] [CrossRef]
- Lonakar, G.S.; Mahajan, M.S.; Ghosh, S.S.; Sali, J.V. Modeling thin film formation by Ultrasonic Spray method: A case of PEDOT:PSS thin films. Org. Electron. 2012, 13, 2575–2581. [Google Scholar] [CrossRef]
- Rahimzadeh, A.; Eslamian, M. On evaporation of thin liquid films subjected to ultrasonic substrate vibration. Int. Commun. Heat. Mass. Transf. 2017, 83, 15–22. [Google Scholar] [CrossRef]
- Lu, Z.; Ronson, T.K.; Heard, A.W.; Feldmann, S.; Vanthuyne, N.; Martinez, A.; Nitschke, J.R. Enantioselective fullerene functionalization through stereochemical information transfer from a self-assembled cage. Nat. Chem. 2023, 15, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Seifermann, S.M.; Pierrat, P.; Bräse, S. Synthesis of highly functionalized C60 fullerene derivatives and their applications in material and life sciences. Org. Biomol. Chem. 2015, 13, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Y.; Sharma, S.K.; Yin, R.; Agrawal, T.; Chiang, L.Y.; Hamblin, M.R. Functionalized Fullerenes in Photodynamic Therapy. J. Biomed. Nanotechnol. 2014, 10, 1918–1936. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Bai, Y.; Li, Z.; Cheng, B. C60 as fine fillers to improve poly(phenylene sulfide) electrical conductivity and mechanical property. Sci. Rep. 2017, 7, 4443. [Google Scholar] [CrossRef]
- Nath, D.; Singh, F.; Das, R. X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study. Mater. Chem. Phys. 2020, 239, 122021. [Google Scholar] [CrossRef]
- Nidhi, S.D.; Mathur, A.S.; Singh, B.P.; Kumar, D. Estimation of Elastic Properties of Zinc Oxide Nanomaterial using Williamson Hall Method. Int. J. Eng. Res. Technol. (IJERT) 2019, 5, 666–668. [Google Scholar]
- Yogamalar, R.; Srinivasan, R.; Vinu, A.; Ariga, K.; Bose, A.C. X-ray peak broadening analysis in ZnO nanoparticles. Solid. State Commun. 2009, 149, 1919–1923. [Google Scholar] [CrossRef]
- Kurian, M.; Kunjachan, C. Investigation of size dependency on lattice strain of nanoceria particles synthesised by wet chemical methods. Int. Nano Lett. 2014, 4, 73–80. [Google Scholar] [CrossRef]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef]
- Himabindu, B.; Devi, N.S.M.P.L.; Kanth, B.R. Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models; A review. Mater. Today Proc. 2021, 47, 4891–4896. [Google Scholar] [CrossRef]
- Hassanzadeh-Tabrizi, S.A. Precise calculation of crystallite size of nanomaterials: A review. J. Alloys Compd. 2023, 968, 171914. [Google Scholar] [CrossRef]
- Zheng, T.; Dahn, J.R. Applications of Carbon in Lithium-Ion Batteries. In Carbon Materials for Advanced Technologies; Elsevier: Amsterdam, The Netherlands, 1999; pp. 341–387. [Google Scholar] [CrossRef]
- Krishna, K.M.; Rambabu, K.; Venkateswarlu, P.; Raman, G.K. A Study on Mixing Properties of Binary Mixtures of 2-Methoxyethanol with Aromatic Hydrocarbons. J. Chem. Eng. Data 1995, 40, 132–135. [Google Scholar] [CrossRef]
- Ruoff, R.S.; Tse, D.S.; Malhotra, R.; Lorents, D.C. Solubility of fullerene (C60) in a variety of solvents. J. Phys. Chem. 1993, 97, 3379–3383. [Google Scholar] [CrossRef]
- Shanmugan, S.; Saravanan, N.; Chithambaram, V.; Deepanraj, B.; Palani, G. Investigation on single crystal by tartaric acid–barium chloride: Growth and characterization of novel NLO materials. Bull. Mater. Sci. 2020, 43, 202. [Google Scholar] [CrossRef]
- Saminathan, P.; SenthilKumar, M.; Shanmugan, S.; Selvaraju, P.; Janarthanan, B.; Sadasivuni, K.K. Synthesis and characterization of crystalline perfection on l-Lysine co-doping glycine barium chloride/C6H14N2O2 (L-LGBCAC) single crystal for NLO materials. Mater. Today Proc. 2020, 30, 57–61. [Google Scholar] [CrossRef]
- Mote, V.; Purushotham, Y.; Dole, B. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 2012, 6, 6. [Google Scholar] [CrossRef]
- Deb, A.K.; Chatterjee, P. Estimation of lattice strain in alumina–zirconia nanocomposites by X-ray diffraction peak profile analysis. J. Theor. Appl. Phys. 2019, 13, 221–229. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: Comparison and complementarity upon studying nanoparticle properties. Nanoscale 2018, 10, 12871–12934. [Google Scholar] [CrossRef] [PubMed]
- Cullity, B.D. Elements of X-Ray Diffraction; Addison-Wesley Series in Metallurgy and Materials; Addison Wesley: Boston, MA, USA, 1978. [Google Scholar]
- Tutton, A.E.H. X-Rays and Crystal Structure. Nature 1915, 95, 198–199. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Prylutskyy, Y.I.; Petrenko, V.I.; Ivankov, O.I.; Kyzyma, O.A.; Bulavin, L.A.; Litsis, O.O.; Evstigneev, M.P.; Cherepanov, V.V.; Naumovets, A.G.; Ritter, U. On the Origin of C60 Fullerene Solubility in Aqueous Solution. Langmuir 2014, 30, 3967–3970. [Google Scholar] [CrossRef] [PubMed]
- Saraswati, T.E.; Setiawan, U.H.; Ihsan, M.R.; Isnaeni, I.; Herbani, Y. The Study of the Optical Properties of C60 Fullerene in Different Organic Solvents. Open Chem. 2019, 17, 1198–1212. [Google Scholar] [CrossRef]
Samples | Miller Indices (hkl) | 2θ (°) | () | Average Crystallite Size (nm) | Dislocation Density () () | Average Crystallite Size (nm) | Dislocation Density () () |
---|---|---|---|---|---|---|---|
By Scherrer Method | By WSH Method | ||||||
Powder | (111) | 10.97 | 0.184 | 37.51 | 7.1 × 10−4 | 55 | 3.3 × 10−4 |
(220) | 17.83 | 0.227 | |||||
(311) | 20.90 | 0.224 | |||||
(222) | 21.88 | 0.208 | |||||
(331) | 27.56 | 0.293 | |||||
(420) | 28.27 | 0.201 | |||||
(422) | 31.03 | 0.264 | |||||
(511) | 32.975 | 0.243 | |||||
C60-3h | (111) | 10.84 | 0.1976 | 38.98 | 6.5 × 10−4 | 28.406 | 12.3 × 10−4 |
(220) | 17.72 | 0.258 | |||||
(311) | 20.80 | 0.213 | |||||
(222) | 21.45 | 0.168 | |||||
C60-5h | (111) | 11.02 | 0.236 | 34.35 | 8.4 × 10−4 | 24.315 | 1.6 × 10−4 |
(220) | 17.92 | 0.355 | |||||
(311) | 21.00 | 0.266 | |||||
(222) | 21.67 | 0.181 | |||||
C60-8h | (111) | 10.85 | 0.230 | 41.54 | 5.7 × 10−4 | 33.157 | 9 × 10−4 |
(220) | 17.77 | 0.246 | |||||
(311) | 20.82 | 0.188 | |||||
(222) | 21.45 | 0.166 |
2θ (°) | a (Å)/(C60 Powder) | 2θ (°) | a (Å)/C60-3h | 2θ (°) | a (Å)/C60-5h) | 2θ (°) | a (Å)/C60-8h |
---|---|---|---|---|---|---|---|
10.97 | 13.9455 | 10.84 | 14.1287 | 11.02 | 13.9618 | 10.85 | 14.1548 |
17.83 | 14.0514 | ||||||
20.90 | 14.0722 | 17.72 | 14.1494 | 17.92 | 14.0083 | 17.77 | 14.1257 |
21.88 | 14.0604 | ||||||
27.56 | 14.0863 | 20.78 | 14.1696 | 21.0 | 14.0493 | 20.82 | 14.1293 |
28.27 | 14.1015 | ||||||
31.03 | 14.1033 | 21.49 | 14.3162 | 21.67 | 14.1922 | 21.45 | 14.3294 |
32.975 | 14.1012 | ||||||
average a (Å) | 14.0652 | 14.1910 | 14.0529 | 14.1848 | |||
Expansion | Slight Compression | Expansion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdeslam, N.A.; Latif, A.; Tigrine, Z.; Lehraki, N.; Messeddek, L.; Lebouachera, S.E.I. Elaboration and Characterization of n-Type Organic Semiconductor (Fullerene C60) Deposed by Ultrasonic Technique for Sustainable OTFT Fabrication. Appl. Sci. 2025, 15, 2402. https://doi.org/10.3390/app15052402
Abdeslam NA, Latif A, Tigrine Z, Lehraki N, Messeddek L, Lebouachera SEI. Elaboration and Characterization of n-Type Organic Semiconductor (Fullerene C60) Deposed by Ultrasonic Technique for Sustainable OTFT Fabrication. Applied Sciences. 2025; 15(5):2402. https://doi.org/10.3390/app15052402
Chicago/Turabian StyleAbdeslam, Nora Amele, Aya Latif, Zahia Tigrine, Nadia Lehraki, Lobna Messeddek, and Seif El Islam Lebouachera. 2025. "Elaboration and Characterization of n-Type Organic Semiconductor (Fullerene C60) Deposed by Ultrasonic Technique for Sustainable OTFT Fabrication" Applied Sciences 15, no. 5: 2402. https://doi.org/10.3390/app15052402
APA StyleAbdeslam, N. A., Latif, A., Tigrine, Z., Lehraki, N., Messeddek, L., & Lebouachera, S. E. I. (2025). Elaboration and Characterization of n-Type Organic Semiconductor (Fullerene C60) Deposed by Ultrasonic Technique for Sustainable OTFT Fabrication. Applied Sciences, 15(5), 2402. https://doi.org/10.3390/app15052402