Rendezvous Missions to Systems of Small Solar System Bodies Using the Suboptimal SDRE Control Approach
Abstract
:1. Introduction
Objectives and Paper Outline
2. NEOs Environment
2.1. Close-Proximity Dynamics
2.2. Asteroid Hovering
3. Mathematical Modeling
3.1. Equations of Motion
3.1.1. Equilibria and Natural Orbital Dynamics for Symmetric Rotating NEOs
3.1.2. Zero-Velocity Curves and Equilibrium Points for Some Aspherical Bodies
3.2. Suboptimal Control in Nonlinear Dynamics
3.2.1. State-Dependent (SD) Formulation for Suboptimal Nonlinear Control
3.2.2. SDC Factorization
3.2.3. SDRE Infinite-Horizon Regulator
3.2.4. Reference Trajectory Tracking Using SDRE Regulation
3.2.5. Synchronization with Prescribed Performance
4. Numerical Results
4.1. Hovering a Single-Body Symmetric Asteroid
4.1.1. Body-Fixed Hovering Around (16) Psyche
4.1.2. Body-Fixed Hovering Around 2001SN263-ALPHA
4.2. Hovering Within the Triple NEA System (153591) 2001SN263
4.2.1. System Environment
4.2.2. Tracking Long-Lasting Orbits Within the System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, Q. Minor Planets, Asteroids, Comets and Interplanetary Dust Within 30 au. arXiv 2024, arXiv:2409.09540. [Google Scholar] [CrossRef]
- Hein, A.M.; Perakis, N.; Eubanks, M.; Hibberd, A.; Crowl, A.; Hayward, K.; Kennedy, R., III; Osborne, R. Project Lyra: Sending a spacecraft to 1I/’Oumuamua (former A/2017 U1), the interstellar asteroid. Acta Astronaut. 2019, 161, 552–561. [Google Scholar] [CrossRef]
- Liu, S.; Fienga, A.; Yan, J. A ring model of the main asteroid belt for planetary ephemerides. Icarus 2022, 376, 1–18. [Google Scholar] [CrossRef]
- Bottke, W.F.; Cellino, A.; Paolicchi, P.; Binzel, R. An Overview of the Asteroids: The Asteroids III Perspective. In Asteroids III; Bootke, W.F., Celino, A., Paolicchi, P., Binzel, R.P., Eds.; University of Arizona Press: Tucson, AZ, USA, 2002. [Google Scholar]
- Minor Planet Center. 2022. Available online: https://www.minorplanetcenter.net/ (accessed on 5 March 2023).
- Lupishko, D.F.; Di Martino, M. Physical properties of near-Earth asteroids. Planet. Space Sci. 1998, 46, 47–74. [Google Scholar] [CrossRef]
- Binzel, R.P.; Lupishko, D.; di Martino, M.; Whiteley, R.J.; Hahn, G.J. Physical Properties of Near-Earth Objects. In Asteroids III; Bootke, W.F., Celino, A., Paolicchi, P., Binzel, R.P., Eds.; University of Arizona Press: Tucson, AZ, USA, 2002; pp. 205–218. [Google Scholar]
- Nichols-Fleming, F.; Evans, A.; Johnson, B.; Sori, M. Porosity Evolution in Metallic Asteroids: Implications for the Origin and Thermal History of Asteroid 16 Psyche. J. Geophys. Res. Planets 2022, 127, e2021JE007063. [Google Scholar] [CrossRef]
- Kueppers, M.; Keller, H.; Kührt, E.; A’Hearn, M.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M.; Colangeli, L.; Davidsson, B.; et al. Triple F—A comet nucleus sample return mission. Exp. Astron. 2009, 23, 809–847. [Google Scholar] [CrossRef]
- Cui, P.; Qiao, D. The present status and prospects in the research of orbital dynamics and control near small celestial bodies. Theor. Appl. Mech. Lett. 2014, 4, 013013. [Google Scholar] [CrossRef]
- Michel, P.; Barucci, M.A.; Cheng, A.F.; Bohnhardt, H.; Brucato, J.R.; Dotto, E.; Ehrenfreund, P.; Franchi, I.; Green, S.; Lara, L.M.; et al. MarcoPolo-R: Near-Earth asteroid sample return mission selected for the assessment study phase of the ESA program Cosmic Vision. Acta Astronaut. 2014, 93, 530–538. [Google Scholar] [CrossRef]
- Bowles, N.; Snodgrass, C.; Gibbings, A.; Sanchez, J.; Arnold, J.; Eccleston, P.; Andert, T.; Probst, A.; Naletto, G.; Vandaele, A.; et al. CASTAway: An asteroid main belt tour and survey. Adv. Space Res. 2018, 62, 1998–2025. [Google Scholar] [CrossRef]
- Hasegawa, S.; Kuroda, D.; Kitazato, K.; Kasuga, T.; Sekiguchi, T.; Takato, N.; Aoki, K.; Arai, A.; Choi, Y.J.; Fuse, T.; et al. Physical properties of near-Earth asteroids with a low delta-v: Survey of target candidates for the Hayabusa2 mission. Publ. Astron. Soc. Jpn. 2018, 70, 114. [Google Scholar] [CrossRef]
- Longobardo, A. Sample Return Missions; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Marcos, C.F.; Marcos, R.F. Recent arrivals to the main asteroid belt. Celest. Mech. Dyn. Astron. 2022, 134, 38. [Google Scholar] [CrossRef]
- Hirabayashi, M.; Nakano, R.; Tatsumi, E.; Walsh, K.J.; Barnouin, O.S.; Michel, P.; Hartzell, C.M.; Britt, D.T.; Sugita, S.; Watanabe, S.I.; et al. Spin-driven evolution of asteroids’ top-shapes at fast and slow spins seen from (101955) Bennu and (162173) Ryugu. Icarus 2020, 352, 113946. [Google Scholar] [CrossRef]
- Jawin, E.; McCoy, T.; Walsh, K.; Connolly, H.; Ballouz, R.L.; Ryan, A.; Kaplan, H.; Pajola, M.; Hamilton, V.; Barnouin, O.; et al. Global geologic map of asteroid (101955) Bennu indicates heterogeneous resurfacing in the past 500,000 years. Icarus 2022, 381, 114992. [Google Scholar] [CrossRef]
- Minor Planet Center. 2022. Available online: https://mars.nasa.gov/msr/spacecraft/sample-retrieval-lander/ (accessed on 20 January 2024).
- Psyche: Mission to a Metal World. 2023. Available online: https://science.nasa.gov/mission/psyche/ (accessed on 20 January 2024).
- Shoemaker, E.M.; Shoemaker, C. The Crash of P/Shoemaker-Levy 9 Into Jupiter and Its Implications for Comet Bombardment on Earth. LPI Contrib. 1994, 825, 113. [Google Scholar]
- Giorgini, J.D.; Ostro, S.J.; Benner, L.A.M.; Chodas, P.W.; Chesley, S.R.; Hudson, R.S.; Nolan, M.C.; Klemola, A.R.; Standish, E.M.; Jurgens, R.F.; et al. Asteroid 1950 DA’s Encounter with Earth in 2880: Physical Limits of Collision Probability Prediction. Science 2002, 296, 132–136. [Google Scholar] [CrossRef] [PubMed]
- Scheeres, D.J. Close Proximity Operations for Implementing Mitigation Strategies. In Proceedings of the 2004 Planetary Defense Conference: Protecting Earth from Asteroids, Orange County, CA, USA, 23–26 February 2004; pp. 1–11. [Google Scholar] [CrossRef]
- Anthony, N.; Emami, M.R. Asteroid engineering: The state-of-the-art of Near-Earth Asteroids science and technology. Prog. Aerosp. Sci. 2018, 100, 1–17. [Google Scholar] [CrossRef]
- Chelyabinsk Meteor. 2018. Available online: https://www.nasa.gov/feature/five-years-after-the-chelyabinsk-meteor-nasa-leads-efforts-in-planetary-defense (accessed on 28 December 2022).
- ESA—Near-Earth Objects Coordination Centre. Impact Threat Analysis Update Completed for 1950-DA. 2022. Available online: https://neo.ssa.esa.int/-/impact-threat-analysis-update-completed-for-1950-da (accessed on 12 December 2022).
- Raymond, C.A.; Bell, J.F.; Park, R.S.; Landau, D.; Chesley, S.R.; Reh, K.; Chodas, P.W.; Brozović, M. Potential Mission Concepts for Characterizing the Potentially Hazardous Near-Earth Asteroid (99942) Apophis. In Proceedings of the Apophis T-9 Years: Knowledge Opportunities for the Science of Planetary Defense, Virtual, 4–6 November 2020; Volume 2242, p. 2048. [Google Scholar]
- Double Asteroid Redirection Test. 2022. Available online: https://www.nasa.gov/news-release/nasa-confirms-dart-mission-impact-changed-asteroids-motion-in-space/ (accessed on 12 December 2022).
- Range, M.M.; Arbic, B.K.; Johnson, B.C.; Moore, T.C.; Titov, V.; Adcroft, A.J.; Ansong, J.K.; Hollis, C.J.; Ritsema, J.; Scotese, C.R.; et al. The Chicxulub Impact Produced a Powerful Global Tsunami. AGU Adv. 2022, 3, e2021AV000627. [Google Scholar] [CrossRef]
- Dorrington, S. Architecture for an Asteroid Mining Industry. In Proceedings of the 67th International Astronautical Congress, Guadalajara, Mexico, 23–26 September 2016. [Google Scholar]
- Hein, A.; Saidani, M.; Tollu, H. Exploring Potential Environment Benefits of Asteroid Mining. In Proceedings of the International Astronautical Congress, International Astronautical Federation (IAF), Bremen, Germany, 1–5 October 2018; pp. 1–7. [Google Scholar]
- Jedicke, R.; Sercel, J.; Gillis-Davis, J.; Morenz, K.J.; Gertsch, L. Availability and delta-v requirements for delivering water extracted from near-Earth objects to cis-lunar space. Planet. Space Sci. 2018, 159, 28–42. [Google Scholar] [CrossRef]
- Psyche: Mission to a Metal World. 2022. Available online: https://psyche.asu.edu/ (accessed on 10 November 2022).
- Moura, T.S.; Winter, O.C.; Amarante, A.; Sfair, R.; Borderes-Motta, G.; Valvano, G. Dynamical environment and surface characteristics of asteroid (16) Psyche. Mon. Not. R. Astron. Soc. 2019, 491, 3120–3136. [Google Scholar] [CrossRef]
- Cheng, A. Near Earth Asteroid Rendezvous: Mission summary. In Asteroids III; Bootke, W.F., Celino, A., Paolicchi, P., Binzel, R.P., Eds.; University of Arizona Press: Tucson, AZ, USA, 2002; pp. 3–15. [Google Scholar]
- Thomas, C.; Naidu, S.; Scheirich, P.; Moskovitz, N.; Pravec, P.; Chesley, S.; Rivkin, A.; Osip, D.; Lister, T.; Benner, L.; et al. Orbital Period Change of Dimorphos Due to the DART Kinetic Impact. Nature 2023, 616, 448–451. [Google Scholar] [CrossRef]
- Scheeres, D.J. Close proximity dynamics and control about asteroids. In Proceedings of the 2014 American Control Conference, Portland, OR, USA, 4–6 June 2014; pp. 1584–1598. [Google Scholar] [CrossRef]
- Baresi, N.; Lubey, D.; Scheeres, D. Model estimation using hovering satellites about asteroids. In Proceedings of the International Astronautical Congress, Jerusalem, Israel, 12–16 October 2015. [Google Scholar]
- Scheeres, D.J. Orbital mechanics about small bodies. Acta Astronaut. 2012, 72, 1–14. [Google Scholar] [CrossRef]
- Cimen, T. Survey of State-Dependent Riccati Equation in Nonlinear Optimal Feedback Control Synthesis. J. Guid. Control Dyn. 2012, 35, 1025–1047. [Google Scholar] [CrossRef]
- Sukhanov, A.A.; de Velho, H.F.; Macau, E.E.; Winter, O.C. The Aster Project: Flight to a Near-Earth Asteroid. Cosm. Res. 2010, 48, 443–450. [Google Scholar] [CrossRef]
- Lauretta, D.S.; Balram-Knutson, S.S.; Beshore, E.; Boynton, W.V.; d’Aubigny Drouet, C.; DellaGiustina, D.N.; Enos, H.L.; Golish, D.R.; Hergenrother, C.W.; Howell, E.S.; et al. OSIRIS-REx: Sample Return from Asteroid (101955) Bennu. Space Sci. Rev. 2017, 212, 925–984. [Google Scholar] [CrossRef]
- Scheeres, D.J. Close proximity operations at small bodies: Orbiting, hovering, and hopping. In Mitigation of Hazardous Comets and Asteroids; Cambridge University Press: Cambridge, UK, 2004; pp. 313–336. [Google Scholar] [CrossRef]
- Prado, A.F.B.A. Mapping orbits around the asteroid 2001SN263. Adv. Space Res. 2014, 53, 877–889. [Google Scholar] [CrossRef]
- Niedling, J.; Gaylor, D.; Hallmann, M.; Foerstner, R. Development of a tool for analyzing orbits around asteroids. In Proceedings of the Advances in the Astronautical Sciences, Napa, CA, USA, 14–18 February 2016; pp. 3535–3553. [Google Scholar]
- Araujo, R.A.N.; Moraes, R.V.; Prado, A.F.B.A.; Winter, O.C. Mapping stable direct and retrograde orbits around the triple system of asteroids (45)Eugenia. Mon. Not. R. Astron. Soc. 2017, 472, 3999–4006. [Google Scholar] [CrossRef]
- Cavalca, M.P.O.; Prado, A.F.B.A.; Formiga, J.K.; Gomes, V.M. Strategies to Find Orbits around the Triple Asteroid 2001SN263. In Proceedings of the Space Flight Mechanics Meeting, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar]
- Wang, H.-S.; Hou, X.-Y. Forced hovering orbit above the primary in the binary asteroid system. Celest. Mech. Dyn. Astron. 2022, 134, 987–997. [Google Scholar] [CrossRef]
- Gabern, F.; Koon, W.S.; Marsden, J.E.; Scheeres, D.J. Binary Asteroid Observation Orbits from a Global Dynamical Perspective. SIAM J. Appl. Dyn. Syst. 2006, 5, 252–279. [Google Scholar] [CrossRef]
- Scheeres, D.J. Orbit Mechanics About Small Asteroids. 2007. Available online: https://issfd.org/ISSFD_2007/21-2.pdf (accessed on 15 March 2020).
- Han, C.; Zhang, S.; Wang, X. On-orbit servicing of geosynchronous satellites based on low-thrust transfers considering perturbations. Acta Astronaut. 2019, 159, 658–675. [Google Scholar] [CrossRef]
- Bellerose, J.; Scheeres, D.J. Restricted Full Three-Body Problem: Application to binary bystem 1999 KW4. J. Guid. Control Dyn. 2008, 31, 162–171. [Google Scholar] [CrossRef]
- Chappaz, L.; Broschart, S.B.; Lantoine, G.; Howell, K. Orbital Perturbation Analysis near Binary Asteroid Systems. In Proceedings of the Space Flight Mechanics Meeting, Williamsburg, VA, USA, 11–15 January 2015. [Google Scholar]
- Yang, H.; Zeng, X.; Baoyin, H. Feasible region and stability analysis for hovering around elongated asteroids with low thrust. Res. Astron. Astrophys. 2015, 15, 1571. [Google Scholar] [CrossRef]
- Gabern, F.; Koon, W.S.; Marsden, J.E. Spacecraft Dynamics near a Binary Asteroid; Discrete and Continuous Dynamical Systems, American Institute of Mathematical Sciences: Springfield, MO, USA, 2005; pp. 297–306. [Google Scholar]
- Santos, L.; Prado, A.F.B.A.; Sanchez, D.M. Equilibrium points in the restricted synchronous three-body problem using a mass dipole model. Astrophys. Space Sci. 2017, 362, 61. [Google Scholar] [CrossRef]
- Santos, L.; Prado, A.F.B.A.; Sanchez, D.M. Lifetime of a spacecraft around a synchronous system of asteroids using a dipole model. Astrophys. Space Sci. 2017, 362, 202. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Xu, S. Global search for periodic orbits in the irregular gravity field of a binary asteroid system. Acta Astronaut. 2019, 163, 11–23. [Google Scholar] [CrossRef]
- Wang, W.; Wu, D.; Mengali, G.; Quarta, A.A.; Baoyin, H. Asteroid Hovering Missions from a Fuel-Consumption Viewpoint. J. Guid. Control Dyn. 2020, 43, 1374–1382. [Google Scholar] [CrossRef]
- Araujo, R.; Winter, O.; Prado, A. and Sukhanov, A. Stability Regions Around the Components of the Triple System 2001SN263. Mon. Not. R. Astron. Soc. 2012, 423, 3058–3073. [Google Scholar] [CrossRef]
- Aljbaae, S.; Chanut, T.; Prado, A.F.B.A.; Carruba, V.; Hussmann, H.; Souchay, J.; Sanchez, D.M. Orbital stability near the (87)Sylvia system. Mon. Not. R. Astron. Soc. 2019, 486, 2557–2569. [Google Scholar] [CrossRef]
- Masago, B.Y.P.L.; Prado, A.; Chiaradia, A.P.M.; Gomes, V.M. Developing the “Precessing Inclined Bi-Elliptical Four-Body Problem with Radiation Pressure” to Search for Orbits in the Triple Asteroid 2001SN263. Adv. Space Res. 2016, 57, 962–982. [Google Scholar] [CrossRef]
- Cavalca, M.P.O.; Gomes, V.M.; Sanchez, D.M. Mid-range natural orbits around the triple asteroid 2001SN263. Eur. Phys. J. Spec. Top. 2020, 229, 1557–1572. [Google Scholar] [CrossRef]
- Wickhusen, K.; de Brum, A.G.; Damme, F.; Stark, A.; Vincent, J.B.; Hussmann, H.; Oberst, J. Terminator orbits around the triple asteroid 2001-SN263 in application to the deep space mission ASTER. Acta Astronaut. 2022, 198, 631–641. [Google Scholar] [CrossRef]
- Chanut, T.G.G.; Aljbaae, S.; Carruba, V. Mascon gravitation model using a shaped polyhedral source. Mon. Not. R. Astron. Soc. 2015, 450, 3742–3749. [Google Scholar] [CrossRef]
- Albouy, A.; Dullin, H.R. Relative equilibria of the 3-body problem in R4. J. Geom. Mech. 2020, 12, 323–341. [Google Scholar] [CrossRef]
- Winter, O.C.; Valvano, G.; Moura, T.S.; Borderes-Motta, G.; Amarante, A.; Sfair, R. Asteroid triple-system 2001 SN263: Surface characteristics and dynamical environment. Mon. Not. R. Astron. Soc. 2020, 492, 4437–4455. [Google Scholar] [CrossRef]
- Werner, R.; Scheeres, D.J. Exterior Gravitation of a Polyhedron Derived and Compared with Harmonic and Mascon Gravitation Representations of Asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 1996, 65, 313–344. [Google Scholar] [CrossRef]
- Scheeres, D.; Hesar, S.; Tardivel, S.; Hirabayashi, M.; Farnocchia, D.; McMahon, J.; Chesley, S.; Barnouin, O.; Binzel, R.; Bottke, W.; et al. The geophysical environment of Bennu. Icarus 2016, 276, 116–140. [Google Scholar] [CrossRef]
- Broschart, S.B. Close Proximity Spacecraft Maneuvers near Irregularly Shaped Small Bodies: Hovering, Translation and Descent. 2006. Available online: https://deepblue.lib.umich.edu/handle/2027.42/126101 (accessed on 20 October 2020).
- Scheeres, D.J.; Miller, J.K.; Yeomans, D.K. The Orbital Dynamics Environment of (433)Eros: A Case Study for Future Asteroid Missions; (IPN Progress Report 42-152); Jet Propulsion Laboratory, California Institute of Technology: La Cañada Flintridge, CA, USA, 2002. [Google Scholar]
- Broschart, S.B.; Scheeres, D.J. Control of Hovering Spacecraft Near Small Bodies: Application to Asteroid 25143 Itokawa. J. Guid. Control Dyn. 2005, 28, 343–354. [Google Scholar] [CrossRef]
- Kawaguchi, J. Hayabusa, Summary of Guidance, Navigation and Control Achievement in its Proximity Phase. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, CO, USA, 21–24 August 2006. [Google Scholar] [CrossRef]
- Asteroid Fact Sheet. 2019. Available online: https://nssdc.gsfc.nasa.gov/planetary/factsheet/asteroidfact.html (accessed on 27 September 2019).
- Becker, T.; Howell, E.; Nolan, M.; Magri, C.; Pravec, P.; Taylor, P.; Oey, J.; Higgins, D.; Vilagi, J.; Kornos, L.; et al. Physical modeling of triple near-Earth Asteroid (153591) 2001 SN263 from radar and optical light curve observations. Icarus 2015, 248, 499–515. [Google Scholar] [CrossRef]
- Jiang, Y.; Baoyin, H.; Wang, X.; Li, H. Stability and motion around equilibrium points in the rotating plane-symmetric potential field. Results Phys. 2018, 10, 487–497. [Google Scholar] [CrossRef]
- Balmino, G. Gravitational potential harmonics from the shape of an homogeneous body. Celest. Mech. Dyn. Astron. 1994, 60, 331–364. [Google Scholar] [CrossRef]
- Scheeres, D.J. The Effect of C22 on Orbit Energy and Angular Momentum. Celest. Mech. Dyn. Astron. 1999, 73, 339–348. [Google Scholar] [CrossRef]
- Feng, J.; Hou, X. Dynamics of Equilibrium Points in a Uniformly Rotating Second-Order and Degree Gravitational Field. Astron. J. 2017, 154, 1. [Google Scholar] [CrossRef]
- Valvano, G.; Winter, O.C.; Sfair, R.; Machado Oliveira, R.; Borderes-Motta, G. 2001SN263—The contribution of their irregular shapes on the neighborhood dynamics. Mon. Not. R. Astron. Soc. 2022, 515, 606–616. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, Y.; Gong, S.p. Analysis of the Potential Field and Equilibrium Points of Irregular-shaped Minor Celestial Bodies. Astrophys. Space Sci. 2014, 353, 105–121. [Google Scholar] [CrossRef]
- Jiang, Y.; Baoyin, H. Periodic Orbits Related to the Equilibrium Points in the Potential of Irregular-shaped Minor Celestial Bodies. Results Phys. 2019, 12, 368–374. [Google Scholar] [CrossRef]
- Chanut, T.G.G.; Aljbaae, S.; Prado, A.F.B.A.; Carruba, V. Dynamics in the vicinity of (101955)Bennu: Solar radiation pressure effects in equatorial orbits. Mon. Not. R. Astron. Soc. 2017, 470, 2687–2701. [Google Scholar] [CrossRef]
- Hirabayashi, M.; Scheeres, D.J. Analysis of Asteroid (216) Kleopatra Using Dynamical and Structural Constraints. Astrophys. J. 2013, 780, 160. [Google Scholar] [CrossRef]
- Jiang, Y.; Baoyin, H.; Li, H. Collision and Annihilation of Relative Equilibrium Points Around Asteroids with a Changing Parameter. Mon. Not. R. Astron. Soc. 2015, 452, 3924–3931. [Google Scholar] [CrossRef]
- Jiang, Y.; Baoyin, H.; Li, J.; Li, H. Orbits and manifolds near the equilibrium points around a rotating asteroid. Astrophys. Space Sci. 2014, 349, 83–106. [Google Scholar] [CrossRef]
- Sanchez, D.M.; Prado, A. Searching for Less-Disturbed Orbital Regions Around the Near-Earth Asteroid 2001SN263. J. Spacecr. Rocket. 2019, 56, 1–11. [Google Scholar] [CrossRef]
- Doyle, J.C.; Francis, B.A.; Tannenbaum, A.R. Feedback Control Theory; Macmillan Publishing Company: New York, NY, USA, 1992. [Google Scholar]
- Lukes, D.L. Optimal Regulation of Nonlinear Dynamic Systems. SIAM J. Control Optim. 1969, 7, 75–100. [Google Scholar] [CrossRef]
- Cimen, T. Recent Advances in Nonlinear Optimal Feedback Control Design. In Proceedings of the WSEAS International Conference on Applied Mathematics, Miami, FL, USA, 18–20 January 2006; pp. 460–465. [Google Scholar]
- Goh, C. On the Nonlinear Optimal Regulator Problem. Automatica 1993, 29, 751–756. [Google Scholar] [CrossRef]
- Cloutier, J.R.; D’Souza, C.N.; Mracek, C.P. Nonliner regulation and nonlinear H∞ control via the state-dependent Riccati equation technique: Part 1. Theory. In Proceedings of the IFAC World Congress, San Francisco, CA, USA, 30 June–5 July 1996. [Google Scholar]
- Pittner, J.; Simaan, M. Tandem Cold Metal Rolling Mill Control; Springer: London, UK, 2011. [Google Scholar]
- Zhang, Y.; Li, S.; Liao, L. Near-optimal control of dynamical systems—A brief survey. Annu. Rev. Control 2019, 47, 71–80. [Google Scholar] [CrossRef]
- Sontag, E. Mathematical Control Theory: Deterministic Finite-Dimensional Systems; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar] [CrossRef]
- Anderson, B.D.O.; Moore, J.B. Optimal Control; Prentice-Hall: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- Elloumi, S.; Sansa, I.; Braiek, N.B. On the stability of optimal controlled systems with SDRE approach. In Proceedings of the International Multi-Conference on Systems, Signals and Devices, Chemnitz, Germany, 20–23 March 2012; pp. 1–5. [Google Scholar]
- Banks, H.T.; Lewis, B.M.; Tran, H.T. Nonlinear Feedback Controllers and Compensators: A state-dependent Riccati equation approach. Comput. Optim. Appl. 2007, 37, 177–218. [Google Scholar] [CrossRef]
- Nekoo, R.S. Tutorial and Review on the State-dependent Riccati Equation. J. Appl. Nonlinear Dyn. 2019, 8, 109–166. [Google Scholar] [CrossRef]
- Massari, M.; Zamaro, M. Application of SDRE Technique to Orbitral and Attitide Control of Spacecraft Formation Flying. Acta Astronaut. 2014, 94, 409–420. [Google Scholar] [CrossRef]
- Batmani, Y.; Davoodi, M.; Meskin, N. On design of suboptimal tracking controller for a class of nonlinear systems. In Proceedings of the American Control Conference, Boston, MA, USA, 6–8 July 2016; pp. 1094–1098. [Google Scholar]
- Naidu, D.S.; Paul, S.; Khamis, A.; Rieger, C.R. A Simplified SDRE Technique for Finite Horizon Tracking Problem in Optimal Control Systems. In Proceedings of the Indian Control Conference, Hyderabad, India, 18–20 December 2019; pp. 170–175. [Google Scholar]
- Bourdache-Siguerdidjane, H.; Fliess, M. Optimal Feedback Control of Non-linear Systems. Automatica 1987, 23, 365–372. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, W.M. Nonliner Optimal Control: Alternatives to the Hamilton-Jacobi Equation. In Proceedings of the Conference on Decision and Control, Kobe, Japan, 11–13 December 1996; pp. 3942–3947. [Google Scholar]
- Popescu, M.; Dumitrache, A. On the Optimal Control of Affine Nonlinear Systems. Math. Probl. Eng. 2005, 2005, 465–475. [Google Scholar] [CrossRef]
- Elloumi, S.; Braiek, N.B. On Feedback Control Techniques of Nonlinear Analytic Systems. J. Appl. Res. Technol. 2014, 12, 500–513. [Google Scholar] [CrossRef]
- Pearson, J.D. Approximation Methods in Optimal Control. J. Electron. Control 1962, 13, 453–465. [Google Scholar] [CrossRef]
- Burghart, J.H. A Technique for Suboptimal Feedback Control of Nonlinear Systems. IEEE Trans. Autom. Control 1969, 14, 530–533. [Google Scholar] [CrossRef]
- Cimen, T. State Dependent Ricatti Equation (SDRE) Control: A survey. In Proceedings of the World Congress, Seoul, Republic of Korea, 6–11 July 2008; pp. 201–215. [Google Scholar]
- Cimen, T. Systematic and effective design of nonlinear feedback controllers via the state-dependent Riccati equation (SDRE) method. Annu. Rev. Control 2010, 34, 32–51. [Google Scholar] [CrossRef]
- Roudkenary, K.A.; Khaloozadeh, H.; Sedigh, A.K. SDRE Control of Non-affine Systems. In Proceedings of the International Conference on Control, Instrumentation and Automation, Qazvin, Iran, 27–28 January 2016; pp. 239–244. [Google Scholar] [CrossRef]
- Naidu, D.S.; Paul, S.; Rieger, C.R. A simplified SDRE technique for regulation in optimal control systems. In Proceedings of the IEEE International Conference on Electro Information Technology, Brookings, SD, USA, 20–22 May 2019; pp. 327–332. [Google Scholar]
- Erdem, E.; Alleyne, A. Experimental real-time SDRE control of an underactuated robot. In Proceedings of the IEEE Conference on Decision and Control, Orlando, FL, USA, 4–7 December 2001; Volume 3, pp. 2986–2991. [Google Scholar]
- Lam, Q.; Xin, M.; Cloutier, J. SDRE control stability criteria and convergence issues: Where are we today addressing practitioners’ concerns? In Proceedings of the Infotech Aerospace Conference, AIAA, Garden Grove, CA, USA, 19–21 June 2012. [Google Scholar] [CrossRef]
- Bogdanov, A.; Wan, E. SDRE Control With Nonlinear Feedforward Compensation For A Small Unmanned Helicopter. In Proceedings of the AIAA Unmanned Unlimited Conference, San Diego, CA, USA, 15–18 September 2003. [Google Scholar]
- Lee, D.; Butcher, E.A.; Scheeres, D.J. Finite-Time Control for Spacecraft Body-Fixed Hovering Over an Asteroid. IEEE Trans. Aerosp. Electron. Syst. 2014, 51, 506–520. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, L.; Bai, J. Velocity-Free Prescribed Performance Control for Spacecraft Hovering Over an Asteroid with Input Saturation. J. Frankl. Inst. 2020, 357, 6471–6497. [Google Scholar] [CrossRef]
- Ferrari, F.; Lavagna, M.; Howell, K. Trajectory design about binary asteroids through coupled three-body problems. In Proceedings of the AAS/AIAA Space Flight Mecanics Meetings, Santa Fe, NM, USA, 26–30 January 2014; pp. 2093–2110. [Google Scholar]
- Lee, D.; Bang, H.; Butcher, E.; Amit, S. Nonlinear Output Tracking and Disturbance Rejection for Autonomous Close Range Rendezvous and Docking of Spacecraft. Trans. Jpn. Soc. Aeronaut. Space Sci. 2014, 57, 225–237. [Google Scholar] [CrossRef]
- Geranmehr, B.; Nekoo, S.R. Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater vehicle using the state-dependent Riccati equation. Ocean Eng. 2015, 96, 248–257. [Google Scholar] [CrossRef]
- Tekinalp, O.; Kumbasar, S. SDRE Based Guidance and Flight Control of Aircraft Formations. In Proceedings of the AIAA Guidance, Navigation and Control Conference, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar] [CrossRef]
- Ogundele, A.D. Nonlinear Optimal Controller for Nonlinear Spacecraft Formation Flying with Periodic Coefficients via SDRE Technique. In Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, Virtual, 9–12 August 2020. [Google Scholar]
- Strano, S.; Terzo, M. A SDRE-based Tracking Control for a Hydraulic Actuation System. Mech. Syst. Signal Process. 2015, 60, 715–726. [Google Scholar] [CrossRef]
- Batmani, Y.; Davoodi, M.; Meskin, N. Nonlinear Suboptimal Tracking Controller Design Using State-Dependent Riccati Equation Technique. IEEE Trans. Control Syst. Technol. 2017, 25, 1833–1839. [Google Scholar] [CrossRef]
- Jayaram, A.; Tadi, M. Synchronization of chaotic systems based on SDRE method. Chaos Solitons Fractals 2006, 28, 707–715. [Google Scholar] [CrossRef]
- Korayem, M.H.; Nekoo, S.R. State-dependent differential Riccati equation (SDDRE) to track control of time-varying systems with state and control nonlinearities. ISA Trans. 2015, 57, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Batmani, Y. Chaos control and chaos synchronization using the state-dependent Riccati equation techniques. Trans. Inst. Meas. Control 2019, 41, 311–320. [Google Scholar] [CrossRef]
- Shahradfar, E.; Fakharian, A. Optimal controller design for DC microgrid based on state-dependent Riccati Equation (SDRE) approach. Cyber-Phys. Syst. 2021, 7, 41–72. [Google Scholar] [CrossRef]
- Franzini, G.; Tannous, M.; Innocenti, M. Spacecraft Relative Motion Control Using the State Dependent Ricatti Equation Technique. In Proceedings of the International Esa Conference on Guidance, Navigation and Control Systems, Salzburg, Austria, 29 May–2 June 2017. [Google Scholar]
- Kuo, Y.L. Robust chaos synchronizations using an SDRE-based sub-optimal control approach. Nonlinear Dyn. 2014, 76, 733–742. [Google Scholar] [CrossRef]
- Anderson, B.; Moore, J. Linear system optimisation with prescribed degree of stability. Proc. Inst. Electr. Eng. 1969, 116, 2083–2087. [Google Scholar] [CrossRef]
- Prach, A.; Tekinalp, O. Development of a State Dependent Ricatti Equation Based Tracking Flight Controller for Unmanned Aircraft. In Proceedings of the AIAA Guidance, Navigation and Control Conference, Boston, MA, USA, 19–22 August 2013; pp. 1–14. [Google Scholar]
- Ozawa, R.; Takahashi, M. Agile Attitude Control and Singularity Avoidance/Escape by the SDRE Method Using a Biased State-Dependent Weighting Matrix. Appl. Sci. 2018, 8, 140. [Google Scholar] [CrossRef]
- Santos, G.P.; Balthazar, J.M.; Janzen, F.C.; Rocha, R.T.; Nabarrete, A.; Tusset, A.M. Nonlinear dynamics and SDRE control applied to a high-performance aircraft in a longitudinal flight considering atmospheric turbulence in flight. J. Sound Vib. 2018, 436, 273–285. [Google Scholar] [CrossRef]
- Kim, C.H.; Sung, S.K.; Yang, C.D.; Yu, Y.H. Rotorcraft Trajectory Tracking Using the State-Dependent Ricatti Equation Controller. Trans. Jpn. Soc. Aeronaut. Space Sci. 2008, 51, 184–192. [Google Scholar] [CrossRef]
- Lima, J.J.; Santos, M.M.D.; Tusset, A.M.; Bassinelo, D.G.; Janzen, F.C.; Balthazar, J.M. Nonlinear Control Strategy Based on Discrete-Time SDRE for Electronic Throtle Control. In Proceedings of the IEEE International Conference on Industry Applications, Curitiba, Brazil, 20–23 November 2016; pp. 1–7. [Google Scholar]
- Banks, H.T.; Kwon, H.D.; Toivanen, J.A.; Tran, H.T. A state-dependent Riccati equation-based estimator approach for HIV feedback control. Optim. Control Appl. Methods 2006, 27, 93–121. [Google Scholar] [CrossRef]
- Batmani, Y.; Khaloozadeh, H. Optimal chemotherapy in cancer treatment: State dependent Riccati equation control and extended Kalman filter. Optim. Control Appl. Methods 2013, 34, 562–577. [Google Scholar] [CrossRef]
- Tusset, A.M.; Bueno, A.M.; Santos, J.P.; Tsuchida, M.; Balthazar, J.M. A non-ideally excited pendulum controlled by SDRE technique. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 2459–2472. [Google Scholar] [CrossRef]
- Montagner, V.F.; Ribas, S.P. State feedback control for tracking sinusoidal references with rejection of disturbances applied to UPS systems. In Proceedings of the Annual Conference of IEEE Industrial Eletronics, Porto, Portugal, 3–5 November 2009; pp. 1764–1769. [Google Scholar] [CrossRef]
- Tusset, A.M.; Bueno, A.M.; Nascimento, C.B.; Kaster, M.S.; Balthazar, J.M. Chaos Suppression in NEMs Resonators by Using Nonlinear Control Design. In Proceedings of the International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, Vienna, Austria, 10–14 July 2012; pp. 183–189. [Google Scholar] [CrossRef]
- Tusset, A.M.; Bueno, A.M.; Nascimento, C.B.; Kaster, M.S.; Balthazar, J.M. Nonlinear State Estimation and Control for Chaos Suppression in MEMs Resonator. Shock Vib. 2013, 20, 749–761. [Google Scholar] [CrossRef]
- Tusset, A.M.; Balthazar, J.M.; Felix, J.L.P. On elimination of chaotic behavior in a non-ideal portal frame structural system, using both passive and active controls. J. Vib. Control 2013, 19, 803–813. [Google Scholar] [CrossRef]
- Balthazar, J.M.; Bassinello, D.G.; Tusset, A.M.; Bueno, A.M.; Junior, B.R.P. Nonlinear control in an electromechanical transducer with chaotic behaviour. Meccanica 2014, 49, 1859–1867. [Google Scholar] [CrossRef]
- Chavarette, F.R.; Peruzzi, N.J.; Ferreira, D.C.; Lopes, M.L.M. Chaos Control via SDRE Method Applied to a Non-Ideal Vibration Absorber Coupled to a Nonlinear Oscillator. Int. J. Pure Appl. Math. 2015, 103, 311–320. [Google Scholar] [CrossRef]
- Rafikov, M.; Balthazar, J.M. Optimal Linear and Nonlinear Control Design for Chaotic Systems. In Proceedings of the International Conference on Multibody Systems, Nonlinear Dynamics and Control, Long Beach, CA, USA, 24–28 September 2005; Volume 6, pp. 867–873. [Google Scholar]
- Nekoo, S.R. Output- and state-dependent Riccati equation: An output feedback controller design. Aerosp. Sci. Technol. 2022, 126, 107649. [Google Scholar] [CrossRef]
- Fang, J.; Margot, J.L.; Brozović, M.; Nolan, M.C.; Benner, L.A.M.; Taylor, P.A. Orbits of NEA triples 2001SN263 and 1994CC: Properties, origin and evolution. Astron. J. 2011, 141, 1–15. [Google Scholar] [CrossRef]
- Perna, D.; Alvarez-Candal, A.; Fornasier, S.; Kanuchová, Z.; Giuliatti Winter, S.M.; Vieira Neto, E.; Winter, O.C. The triple near-Earth asteroid (153591) 2001 SN263: An ultra-blue, primitive target for the Aster space mission. Astron. Astrophys. 2014, 568, L6. [Google Scholar] [CrossRef]
- Small-Body Targets of Spacecraft Missions. Available online: https://ssd.jpl.nasa.gov/sb/targets.html (accessed on 10 December 2024).
- Almeida Junior, A.D.; Mescolotti, B.; Chiaradia, A.P.M.; Gomes, V.M.; Prado, A.F.B.A. Searching for Orbits for a Mission to the Asteroid 2001SN263 Considering Errors in the Physical Parameters. Symmetry 2022, 14, 1789. [Google Scholar] [CrossRef]
NEO | Discovery | Mass ( kg) | Dimension (km) | Rotation Period (h) | Density (g/cm3) |
---|---|---|---|---|---|
(4) Vesta | 1807 | 259,000 | 569 × 555 × 453 | 5.3 | 3.4 |
(16) Psyche | 1852 | 24,000 | 280 × 230 × 190 | 4.2 | 4.0 |
(253) Mathilde | 1885 | 103.3 | 66 × 48 × 46 | 417.7 | 1.3 |
(433) Eros | 1898 | 6.7 | 33 × 13 × 13 | 5.3 | 2.7 |
(153591) 2001SN263 (main body “Alpha”) | 2001 | 0.00917 | 2.8 × 2.7 × 2.9 | 3.4 | 1.1 |
Equilibrium Points | Eigenvalues | Eigenvectors | J | ||
---|---|---|---|---|---|
(m) | |||||
(±554,560.98, 0) | |||||
(0, ±551,605.90) |
Equilibrium Points | Eigenvalues | Eigenvectors | J | ||
---|---|---|---|---|---|
(m) | |||||
(±221,891.42, 0) | |||||
(0, ± 213,712.06) |
Equilibrium Points | Eigenvalues | Eigenvectors | J | ||
---|---|---|---|---|---|
(m) | |||||
(±727,583, 0) | |||||
(0, ±727,372) |
Equilibrium Points | Eigenvalues | Eigenvectors | J | ||
---|---|---|---|---|---|
(m) | |||||
(±18,879.64, 0) | |||||
(0, ±14,975.88) | |||||
(0, ±9015.31) |
Equilibrium Points | Eigenvalues | Eigenvectors | J | ||
---|---|---|---|---|---|
(m) | |||||
(±1480.39, 0) | |||||
(0, ±1450.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cereja, E.; Balthazar, J.M.; Tusset, A.M.; Razoumny, V.; Prado, A.F.B.d.A. Rendezvous Missions to Systems of Small Solar System Bodies Using the Suboptimal SDRE Control Approach. Appl. Sci. 2025, 15, 1799. https://doi.org/10.3390/app15041799
Cereja E, Balthazar JM, Tusset AM, Razoumny V, Prado AFBdA. Rendezvous Missions to Systems of Small Solar System Bodies Using the Suboptimal SDRE Control Approach. Applied Sciences. 2025; 15(4):1799. https://doi.org/10.3390/app15041799
Chicago/Turabian StyleCereja, Edson, José Manoel Balthazar, Angelo Marcelo Tusset, Vladimir Razoumny, and Antonio Fernando Bertachini de Almeida Prado. 2025. "Rendezvous Missions to Systems of Small Solar System Bodies Using the Suboptimal SDRE Control Approach" Applied Sciences 15, no. 4: 1799. https://doi.org/10.3390/app15041799
APA StyleCereja, E., Balthazar, J. M., Tusset, A. M., Razoumny, V., & Prado, A. F. B. d. A. (2025). Rendezvous Missions to Systems of Small Solar System Bodies Using the Suboptimal SDRE Control Approach. Applied Sciences, 15(4), 1799. https://doi.org/10.3390/app15041799