Noise Reduction Using Synthetic Microjet Excitation in Supersonic Rectangular Jets
Abstract
1. Introduction
1.1. Background
1.2. Purpose
2. Methodology
2.1. Problem Statement
2.2. Computational Setup
2.3. Excitation Method
3. Results
3.1. Time-Averaged Flow
3.2. Instantaneous Flow
3.3. SPOD Modes
3.4. Far-Field Acoustics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nesbitt, E. Current engine noise and reduction technology. CEAS Aeronaut. J. 2019, 10, 93–100. [Google Scholar] [CrossRef]
- Mora, P.; Baier, F.; Kailasanath, K.; Gutmark, E.J. Acoustics from a rectangular supersonic nozzle exhausting over a flat surface. J. Acoust. Soc. Am. 2016, 140, 4130–4141. [Google Scholar] [CrossRef]
- Baier, F.; Mora, P.A.; Gutmark, E.J.; Kailasanath, K. Flow Measurements from a Supersonic Rectangular Nozzle Exhausting Over a Flat Surface. In Proceedings of the AIAA Paper 2017-0932 Presented at 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Lighthill, M.J. On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 1952, 211, 564–587. [Google Scholar] [CrossRef]
- Lighthill, M.J. On sound generated aerodynamically II. Turbulence as a source of sound. Proc. R. Soc. Lond. A 1954, 222, 1–32. [Google Scholar] [CrossRef]
- Crow, S.C.; Champagne, F.H. Orderly structure in jet turbulence. J. Fluid Mech. 1971, 48, 547–591. [Google Scholar] [CrossRef]
- Brown, G.L.; Roshko, A. On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 1974, 64, 775–816. [Google Scholar] [CrossRef]
- Harper-Bourne, M.; Fisher, M.J. The Noise from Shock Waves in Supersonic Jets. AGARD CP 1973, 131. [Google Scholar]
- Tam, C.K.W.; Tanna, H.K. Shock associated noise of supersonic jets from convergent-divergent nozzles. J. Sound Vib. 1982, 81, 337–358. [Google Scholar] [CrossRef]
- Raman, G. Advances in understanding supersonic jet screech: Review and perspective. Prog. Aerosp. Sci. 1998, 34, 45–106. [Google Scholar] [CrossRef]
- Raman, G. Supersonic Jet Screech: Half-century from Powell to the present. J. Sound Vib. 1999, 225, 543–571. [Google Scholar] [CrossRef]
- Henderson, B. Fifty Years of Fluidic Injection for Jet Noise Reduction. Int. J. Aeroacoust. 2010, 9, 91–122. [Google Scholar] [CrossRef]
- Coderoni, M.; Lyrintzis, A.S.; Blaisdell, G.A. Large-Eddy Simulations Analysis of Supersonic Heated Jets with Fluid Injection for Noise Reduction. AIAA J. 2019, 57, 3442–3455. [Google Scholar] [CrossRef]
- Samimy, M.; Kim, J.H.; Kastner, J.; Adamovich, I.; Utkin, Y. Active control of high-speed and high-Reynolds-number jets using plasma actuators. J. Fluid Mech. 2007, 578, 305–330. [Google Scholar] [CrossRef]
- Gaitonde, D.V.; Samimy, M. Coherent structures in plasma-actuator controlled supersonic jets: Axisymmetric and mixed azimuthal modes. Phys. Fluids 2011, 23, 095104. [Google Scholar] [CrossRef]
- Alvi, F.S.; Shih, C.; Elavarasan, R.; Garg, G.; Krothapall, A. Control of Supersonic Impinging Jet Flows Using Supersonic Microjets. AIAA J. 2003, 41, 1347–1355. [Google Scholar] [CrossRef]
- Ibrahim, M.K.; Kunimura, R.; Nakamura, Y. Mixing Enhancement of Compressible Jets by Using Unsteady Microjets as Actuators. J. Fluid Mech. 2002, 40, 681–688. [Google Scholar] [CrossRef]
- Mankbadi, R.; Liu, J.T.C. Sound generated aerodynamically revisited: Large-scale structures in a turbulent jet as a source of sound. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. 1984, 311, 183–217. [Google Scholar] [CrossRef]
- Mankbadi, R.; Hayder, M.E.; Povinelli, L.A. The Structure of Supersonic Jet Flow and Its Radiated Sound. AIAA J. 1994, 31, 897–906. [Google Scholar] [CrossRef]
- Lyrintzis, A.S.; Coderoni, M. Overview of the Use of Large-Eddy Simulations in Jet Aeroacoustics. AIAA J. 2020, 58, 1620–1638. [Google Scholar] [CrossRef]
- Lyrintzis, A.S. Surface Integral Methods in Computational Aeroacoustics—From the (CFD) Near-Field to the (Acoustic) Far-Field. Int. J. Aeroacoust. 2003, 2, 95–128. [Google Scholar] [CrossRef]
- Lyrintzis, A.S. Review: The Use of Kirchhoff’s Method in Computational Aeroacoustics. J. Fluids Eng. 1994, 116, 665–676. [Google Scholar] [CrossRef]
- Lyrintzis, A.S.; Mankbadi, R. Prediction of the far-field jet noise using Kirchhoff’s formulation. AIAA J. 1996, 34, 413–416. [Google Scholar] [CrossRef]
- Mankbadi, R.; Shih, S.H.; Hixon, D.R.; Stuart, J.T.; Povinelli, L.A. A Surface-Integral Formulation for Jet Noise Prediction Based on the Pressure Signal Alone. J. Comput. Acoust. 1998, 6, 307–320. [Google Scholar] [CrossRef]
- Ffowcs Williams, J.E.; Hawkings, D.L. Sound generation by turbulence and surfaces in arbitrary motion. Philos. Trans. R. Soc. London. Ser. Math. Phys. Sci. 1969, 264, 321–342. [Google Scholar] [CrossRef]
- Salehian, S.; Mankbadi, R. Jet Noise in Airframe Integration and Shielding. Appl. Sci. 2020, 10, 511. [Google Scholar] [CrossRef]
- Malczewski, B.J.; Salehian, S.; Golubev, V.V.; Mankbadi, R.R. Large-eddy simulations of noise reduction via fundamental-harmonic interactions in a supersonic rectangular jet. Int. J. Aeroacoustics 2024. [Google Scholar] [CrossRef]
- Prasad, A.L.N.; Unnikrishnan, S. Effect of plasma actuator-based control on flow-field and acoustics of supersonic rectangular jets. J. Fluid Mech. 2023, 964, A11. [Google Scholar] [CrossRef]
- Avihar, E.; Shemesh, N.; Seifert, A.; Pack, L.G. Rotation of a Rectangular Jet by Periodic Excitation. J. Aircr. 2003, 40, 217–219. [Google Scholar] [CrossRef]
- Nichols, J.; Lele, S.; Moin, P.; Ham, F.; Brès, G.; Bridges, J. Large-eddy simulation for supersonic rectangular jet noise prediction: Effects of chevrons. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO, USA, 4–6 June 2012. [Google Scholar] [CrossRef]
- Gaitonde, D.V. Simulation of Supersonic Nozzle Flows with Plasma-based Control. In Proceedings of the 39th AIAA Fluid Dynamics Conference, San Antonio, TX, USA, 22–25 June 2009. [Google Scholar] [CrossRef]
- Malczweski, B.J.; Good, P.P.; Mankbadi, R.R. 3D Nonlinear Integral Technique Based on Linearized Euler Equations for the Prediction of Supersonic Rectangular Jet Noise Sources. In Proceedings of the AIAA Paper 2023-0023 Presented at the AIAA Aviation 2023 Forum, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar] [CrossRef]
- Marques, M.; Salehian, S.; Singh, S.; Golubev, V.V.; Lyrintzis, A.S.; Mankbadi, R.R. Comparative High-Fidelity Studies of Supersonic Rectangular and Round Jet Nozzle Flow. In Proceedings of the AIAA Paper 2023-4517 Presented at AIAA Aviation Forum 2023, San Diego, CA, USA, 12–16 June 2023. [Google Scholar] [CrossRef]
- Marques, M.; Salehian, S.; Golubev, V.V.; Mankbadi, R.R. High Fidelity Simulations of Active Control of Coherent Structures in Axisymmetric Jet. In Proceedings of the AIAA Paper 2023-0025 Presented at AIAA Scitech Forum 2023, National Harbor, MD, USA, 23–27 January 2023. [Google Scholar]
- The OpenFOAM Foundation. OpenFOAM v9 User Guide. 2017. Available online: https://doc.cfd.direct/openfoam/user-guide-v9/contents (accessed on 21 January 2025).
- Poinsot, T.; Lele, S. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 1992, 101, 104–129. [Google Scholar] [CrossRef]
- Bredberg, J. On the Wall Boundary Condition for Turbulence Models; Internal Report 00/4; Chalmers University of Technology: Gothenburg, Sweden, 2000. [Google Scholar]
- Aikens, K.M.; Blaisdell, G.A.; Lyrintzis, A. Analysis of Converging-Diverging Beveled Nozzle Jets Using Large Eddy Simulation with a Wall Model. In Proceedings of the AIAA Paper 2015-0509, AIAA SciTech, 53rd AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA, 5–9 January 2015. [Google Scholar] [CrossRef]
- Bodony, D.; Lele, S. Review of the current status of jet noise predictions using large-eddy simulation. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006. [Google Scholar] [CrossRef]
- Ribeiro, A.F.; Khorrami, M.R.; Ferris, R.; König, B.; Ravetta, P.A. Lessons learned on the use of data surfaces for Ffowcs Williams-Hawkings calculations: Airframe noise applications. Aerosp. Sci. Technol. 2023, 135, 108202. [Google Scholar] [CrossRef]
- Farassat, F. Derivation of Formulations 1 and 1A of Farassat; Langley Research Center: Hampton, Virginia, 2007.
- Oppenheim, A.V.; Schafer, R.W. Discrete-Time Signal Processing; Prentice-Hall: Hoboken, NJ, USA, 1999. [Google Scholar]
- Marques, M. Active Control of Coherent Structures in an Axisymmetric Jet. Master’s Thesis, Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA, 2021. Available online: https://commons.erau.edu/edt/601 (accessed on 21 January 2025).
- Marques, M.; Singh, S.; Salehian, S.; Golubev, V.V.; Anastasios S., L. High-Fidelity Simulations of Rectangular Jet Noise Control Using Micro-Jet Excitation. In Proceedings of the AIAA Paper 2024-2306 Presented at AIAA Scitech Forum 2024, Orlando, FL, USA, 8–12 January 2024. [Google Scholar] [CrossRef]
- Viswanath, K.; Johnson, R.; Corrigan, A.; Kailasanath, K.; Mora, P.; Baier, F.; Gutmark, E. Flow Statistics and Noise of Ideally Expanded Supersonic Rectangular and Circular Jets. AIAA J. 2017, 55, 3425–3439. [Google Scholar] [CrossRef]
- Schmidt, O.T.; Towne, A.; Rigas, G.; Colonius, T.; Brès, G.A. Spectral analysis of jet turbulence. J. Fluid Mech. 2017, 855, 953–982. [Google Scholar] [CrossRef]
- Towne, A.; Schmidt, O.T.; Colonius, T. Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 2018, 847, 821–867. [Google Scholar] [CrossRef]
- Marques, M.; Golubev, V.V.; Lyrintzis, A.S. Acoustic Analysis of Noise Control of Rectangular Jet Using Micro-Jet Excitation. In Proceedings of the 30th AIAA/CEAS Aeroacoustics Conference, Rome, Italy, 4–7 June 2024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, M.; Singh, S.; Lyrintzis, A.; Golubev, V. Noise Reduction Using Synthetic Microjet Excitation in Supersonic Rectangular Jets. Appl. Sci. 2025, 15, 1180. https://doi.org/10.3390/app15031180
Marques M, Singh S, Lyrintzis A, Golubev V. Noise Reduction Using Synthetic Microjet Excitation in Supersonic Rectangular Jets. Applied Sciences. 2025; 15(3):1180. https://doi.org/10.3390/app15031180
Chicago/Turabian StyleMarques, Michael, Surabhi Singh, Anastasios Lyrintzis, and Vladimir Golubev. 2025. "Noise Reduction Using Synthetic Microjet Excitation in Supersonic Rectangular Jets" Applied Sciences 15, no. 3: 1180. https://doi.org/10.3390/app15031180
APA StyleMarques, M., Singh, S., Lyrintzis, A., & Golubev, V. (2025). Noise Reduction Using Synthetic Microjet Excitation in Supersonic Rectangular Jets. Applied Sciences, 15(3), 1180. https://doi.org/10.3390/app15031180